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1. Introduction and metivation

The present lectures review some recent developments in canonical classical
and quantum gravity and supergravity at an introductory level, with special em-
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phasis on issues related to Ashtekar’s variables. The discovery of these variables
is widely regarded as one of the significant advances of the last few years and has
greatly stimulated recent research in canonical gravity. Since there are already
several excellent introductory texts available (see, e.g., ref. [1] and the refer-
ences listed there for a review of the general theory within the more familiar
metric formalism and ref. [2] for a discussion of the new variables), special
emphasis will here be placed on some topics that have not received so much
attention in the existing literature.

The difficulties that one is confronted with in searching for a consistent quan-
tum theory of gravity appear in several guises. First and foremost, there are
enormous conceptual problems in understanding “what really happens™ as one
approaches the Planck scale where the conventional notion of space-time as a
differentiable manifold must necessarily break down. Secondly, there are severe
technical problems, most notably the fact that gravity, when viewed as a conven-
tional quantum field theory, is non-renormalizable and thus in need of modifi-
cation at short distances. Present attempts to come to grips with these problems
center around three different approaches. Among these, the most “physical”
proceeds by gedanken experiments (as well as a certain amount of “gedanken
theory”) to probe physics at the Planck scale. For instance, one studies high (i.e.
Planckian) energy scattering of elementary particles and strings (see, e.g., ref.
[3]), or tries to unlock the secret of quantum gravity through a better under-
standing of black hole physics [4.5]. The advantage of this approach is that it
relies on physical intuition rather than formal mathematics; however, it leaves
aside questions of mathematical consistency. The approach most popular with
particle physicists concentrates on the perturbative structure of the theory. Here
one tries to cure the short distance singularities of quantum gravity by adding
suitable matter to cancel the infinities and thereby to arrive at a mathemati-
cally consistent theory. This approach has so far led to supergravity [6] and
superstrings [ 7], the first theory where all divergences are allegedly absent. Un-
fortunately, little has been learnt about the conceptual difficulties of quantum
gravity until now by following this route, but one hopes that the undoubtedly
beautiful mathematical structures of these theories might ultimately lcad to some
better understanding of the conceptual issues as well. If successful, this approach
could possibly explain the spectrum of elementary particles from the postulated
absence of divergences.

Finally, one can apply canonical quantization methods to gravity [8-10]. This
is, in a sense, the most conservative approach since, at least at the initial stage,
only a good knowledge of textbook methods is required besides knowledge of
Einstein’s theory. This approach appears to be well suited for the investigation of
the conceptual problems of quantum gravity, and has also led to some interesting
formal developments. On the other hand, it has little to say about the ongin of
elementary particles (in particular fermions); their explanation is usually viewed
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Fig. 1. Interpreting the wave function of the Universe [11].

as a secondary problem in the canonical framework and left to other approaches
to solve.

In these lectures, we will focus on the canonical approach with a special eye
towards a particle physics audience. The emphasis here will be on the technical
rather than on conceptual issues. So we will have nothing to say about the pos-
sible interpretation of the wave function of the universe; see, however, fig. | for
some suggestions. We will thus simply apply the usual quantization prescriptions
(supplemented by Dirac’s theory of constrained Hamiltonian systems [8]) to
Einstein’s theory. This procedure leads to a Schrodinger type equation which is
commonly referred to as the “Wheeler-DeWitt equation™ [12,13]. Of course,
this equation is far more complicated than an ordinary Schrodinger equation,
and attempts to find genuine and physically meaningful solutions (so-called
“wave functions of the universe”) have largely failed. The difficulties are partic-
ularly acute in the familiar metric formalism, where one ends up with a highly
non-linear functional differential equation, which is practically impossible to
solve as it stands. In order to break the deadlock, one can try to mutilate it by
retaining only a finite number of degrees of freedom (so-called “mini superspace
approximation”), but one cannot hope to get more than a caricature of the real
world in this way.

An important breakthrough occurred in 1986 with the discovery of new phase
space variables in terms of which the canonical constraints become polynomial
[14,15] (it is a measure of the complexity of Einstein’s theory that it took more
than seventy years for this discovery!). With the new variables, it becomes pos-
sible to construct non-trivial (though formal) solutions to all the constraints
[16,17]. The fact that the interpretation of these solutions remains obscure can
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be viewed as an indication of the highly unfamiliar features of quantum gravity.
Of course, one has no right to expect that a mere change of variables will be suf-
ficient to solve all the problems of quantum gravity, but the formalism contains
sufficiently many new and promising elements to justify some optimism. This
1s especially true when one combines it with other concepts and ideas such as
supergravity and superstrings. We believe that further progress will depend on
giving up isolationist viewpoints, and that interesting developments in the near
future may well occur on the interface between canonical gravity and superstring
theory.

Among the new topics to be treated here are three-dimensional supergravities,
where solutions of the quantum constraints of the N = 1 theory are explicitly
derived for the first time #! . Furthermore, we will discuss “hidden symmetries”
in the canonical framework and their relevance for the construction of observ-
ables in the sense of Dirac. N = 2 supergravity will be treated in quite some
detail here as it is the simplest matter coupled theory exhibiting such symmetries
and thus provides a simpler example of the canonical treatment of extended su-
pergravity than the N = 16 theory discussed in ref. {18]. Although our results
are far from complete, we also briefly consider the quantization of the N = 2
theory. We hope that our arguments will convince the reader that, despite the
numerous open problems, dimensionally reduced supergravities are especially
interesting theoretical laboratories to enlarge the scope of the formalism to mat-
ter coupled theories and perhaps to generalize it to higher dimensions, following
suggestions of ref. [18].

We now summarize some notations and conventions used in these lectures.
We will use capital letters M, NV, ... and A4, B, ... to label curved and flat indices,
respectively, in d dimensions. Similarly, indices m, n, ... and a, b, ... will be em-
ployed to label tensors in d — 1 (spatial) dimensions. We will use the special
indices ¢t and O for the curved and flat time component, so M (A) takes the
“values” m and ¢ (a and 0). A dot or ¢, will denote time derivatives. The metric
has signature (— + --- +) in  dimensions; y matrices obey {74, %} = 2548,

2. Basics of canonical gravity

The canonical treatment of gauge theories relies on the methods developed
by Dirac in his study of constrained systems [8] (see also refs. [19,20]). Local
invariances in gauge theories imply constraints. The most elementary example
is is ordinary electrodynamics, where the absence of §; 4, from the Lagrangian
implies that the associated canonical momentum vanishes. Consistency then

#1 This part of the lectures is based on unpublished joint work with I. McArthur. We are grateful
to him for the permission to include these results here.
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requires that this constraint is preserved by the time evolution, which in turn
leads to Gauss’ law 8,, E™ = 0. More generally, suppose that ¢ is a field without
time derivative in the Lagrangian £. Then we find a primary constraint /7 =
5£/5q§ = 0, and we must have

I = (3L/6¢) {411} =0, (2.1)

which requires

0L/~ 0, (2.2)
where the left hand side of (2.2) is to be expressed in terms of the canonical
variables (this is called a secondary constraint). The above equation already
makes use of standard notation: “~ 0” means “weakly zero”, i.c., the constraints
must be imposed only after all canonical brackets have been calculated [8].
Constraints such as (2.1) or (2.2) single out a hypersurface in the phase space
of the theory. In the quantum theory, the constraint must be imposed as an
operator constraint on the Hilbert space: the states selected in this way are called
“physical states”. We will not always distinguish between classical and quantum
theory. So, par abus de langage, the word “commutator” will refer to both the
classical (Poisson or Dirac) bracket and the quantum commutator.

In this section, we will review the application of Dirac’s formalism to grav-
ity. The basic steps here are, of course, well known [9,10], but we nonetheless
present some details, not only to set up the notation, but also to make the presen-
tation reasonably self-contained. One starts by slicing (“foliating™) space-time
into a sequence of space-like hypersurfaces; this step violates the manifest in-
variance under four-dimensional general coordinate transformations (or diffeo-
morphisms in more mathematical parlance). The configuration space variables
of gravity are the ten components of the metric tensor gy (x) [%d (d+1) com-
ponents in d dimensions], where x is a local coordinate on the given “initial”
space-like hypersurface. As we will see in a moment, not all of these variables
are dynamical, but four of them are Lagrange multipliers, leading to constraints.
These Lagrange multipliers, called “lapse” and “shift” functions (see below),
reflect the invariance of the theory under diffeomorphisms in space-time and
appear in the equations determining the time evolution of the initial space-like
geometry (and therefore also determine which points in space-time are space-
like or time-like with respect to each other).

Below, we will use the vierbein Ey 7 instead of the metric; there is then an
extra local symmetry, namely local Lorentz (= SO(1, 3)) rotations acting on
the flat index A. It is, of course, well known that gravity can be thought of as a
gauge theory which is invariant under local translations (i.e. diffeomorphisms),
which can be generated by space-like or time-like vector fields. Consequently,
we have four canonical constraints, three of which are associated with diffeo-
morphisms acting on the space-like hypersurface. It is the presence of the con-
straint associated with the invariance under time-like diffeomorphisms which
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is responsible for the difference between ordinary gauge theories and gravity:
it contains dynamics whereas the other constraints are only “kinematical” (so
canonical Yang~Mills theories have only “kinematical” constraints). After quan-
tization, the corresponding constraint becomes the celebrated Wheeler-DeWitt
(WDW) equation [12,13]. We will refer to this constraint as the “Hamiltonian
constraint”, or simply the “WDW operator”, regardless of whether we are deal-
ing with the classical or quantum theory. For the remainder of this section we
will work in an arbitrary number (= d) of dimensions and only return to four
dimensions in the next section.
To proceed, we parametrize the vielbein as follows:
—1 -1 arm

R I G B
where partial use has been made of the local Lorentz symmetry to eliminate
some off-diagonal components. Note that we can write flat space-like indices
always as lower indices since they are contracted by J,,. There is still a residual
symmetry under local SO(d — 1) rotations of the dreibein e,,,. Computing the
metric from this parametrization, we find

eun = (NaNa - N* N, >
MN = Nm gmn ’
which is the standard parametrization introduced in ref. [9]; the functions N

and N™ = ¢,”N, are referred to as lapse and shift functions [9,10]. In the
following, we will work with the spin connection w g, which 1s given by

(2.4)

wmpc = Eg" VyEcn = 3 (Qupc — Qpca + Qcap) En™, (2.5)
where V), 1s covariant with respect to gasn, SO
VuVn = OV — TP ynVe (2.6)

for space-time vectors V' with the Christoffel connection I”, and £,5¢ are the
so-called coefficients of anholonomy,

Qupc = 2EMEpYomEnc, (2.7)

where the brackets indicate antisymmetrization with strength one. The Riemann
tensor in our conventions is given by

; c c
Rynvap = OMWnaB — ONOMAB + WOpa WNCB — WNA WMCB, (2.8)

from which the Ricci tensor and the curvature scalar can be computed by con-
traction with the inverse vielbein. For the canonical analysis as well as the di-
mensional reduction of Einstein’s theory to lower dimensions it is convenient to
express the Einstein action directly in terms of the coefficients of anholonomy.
The Einstein action is

£=LYER = JEEMA[V N, Vy1ELN. (2.9)
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Making use of the covariant constancy of the vielbein (i.e., Vi Ex? + w8 Eng
= 0), we can rewrite this action in the form

%E V[MEMA VN]EAN = %E ((UAABCL)CCB — CL)ABC'(UBAC) (210)
up to a total derivative. Inserting (2.5) we get
£ = — kB (Qupc R = 20,5025 - 40,5° 24 ) (2.11)

For the canonical analysis we must now write out the coefficients of anholon-
omy in terms of the parametrization introduced above to find out which of its
components contain time derivatives. One verifies that

Qape = 2€[am€b]n0menc s

‘QabO = O,

Qopo = —€" N0, N . (2.12)
Manifestly, these expressions contain no time derivatives. On the other hand,

‘QObC = }Vil (ebn (()t - Nmf)m) €ne — ()bmencamN”) (213)

does contain time derivatives, but only on the dreibein. Thus, the lépse and
shift functions have vanishing momenta and will act as Lagrange multipliers.
Substituting (2.12) into (2.11), we get

L= £ Ne(420c)L20(be) — 42040 20ee — 82400 2acc
- -Qabcgabc + Z-Qabc-cha + 4~Qabb-Qacc) B (2-14)

where (ab) denotes symmetrization in the indices a, & with strength one; after a
partial integration in ¢ — 1 dimensions, the last three terms in parentheses add
up to the curvature scalar R‘@=1 of the space-like hypersurface plus a term where
the derivative acts on &V, but this is canceled by the term involving Q2,40 84.c. So
we get

L= jNe (-QO(bc)QO(bc) — Q04d L0ee + R(d*”) ‘ (2.15)
The canonical momenta associated with the dretbein are
pam = 5£/5éma = %eebm (QO(ab) - 6ab-QOcc) . (2.16)

Note the position of indices here: to move indices up or down, or to convert
flat into curved indices and vice versa, one contracts with the dreibein. This
is important when computing canonical brackets since momentum variables
with indices in a position different from the one indicated in (2.16) no longer
commute in general. Observe that p transforms as a tensor density with respect
to reparametrizations of the space-like hypersurface. Since (2.16) contains only
the symmetrized part of £q,,, we immediately obtain the primary constraint

Loy = em[apb]m ~0, (2.17)
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which will turn out to be the canonical generator of spatial Lorentz transforma-
tions. The remaining momenta vanish:

po' = 6LJON =0, p' =0L/5N, =0. (2.18)

As explained above, the vanishing of these momentum components implies fur-
ther constraints, which will be presented in a moment. We can invert the above
relations (2.16) to express the components of Q containing time derivatives by
the canonical momenta. In this way we obtain (remember that a, b are spatial
indices, 80 dgy = d — 1)

2 1
.QO(ab) = E <pab + m%;,p) R (2.19)

where p = epap,™. This is the extrinsic curvature k,, of the space-like hyper-
surface, which is defined as the projection of the four-dimensional covariant
derivative of the normal vector onto the hypersurface:

ko = ESMENYME . (2.20)

A short calculation (replacing the ordinary derivative in (2.7) by V) shows that
this is indeed equal to £2y(,,. Taking the trace, we obtain

2

Qope = 2—d€ D. (2.21)
The canonical Hamiltonian is thus
H :pamémg_ﬁ. (2.22)
Use of the above relations and some rearrangement leads to
H = NHy+ NH,, (2.23)
where I
Ho=e ! <pabpab + -2—-:—6'1;172> - %(’R(d_l). (2.24)
Furthermore,
H, = Dmpam s (2.25)

where D,, is covariant with respect to space-like diffeomorphisms, so the dreibein
1s constant under D,,, and

DmDap = €0m (e#lpab) + @macPlcyh + WmbcDac (2.26)

(there is an extra contribution involving the derivative of the dreibein determi-
nant because p,; is a density). According to the general theory and what has been
said above, Hy and H, must vanish weakly in order to preserve py! = p,' = 0.
These, then, are the canonical constraints, and 7 1s the WDW operator. Con-
sequently, the Hamiltonian vanishes weakly, as is the case in any theory in-
variant under reparametrizations of the time coordinate (another example is
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the point particle). For completeness, we mention that the Hamiltonian above
is not unique since we may add a term proportional to the Lorentz constraint
(2.17) to it with a suitable Lagrange multiplier.

The basic Poisson brackets are given by

{ema(x), 05" (¥)} = S 6P (x,y). (2.27)

Other commutators involving the inverse dreibein, or the momenta with the
indices in other positions follow in a straightforward fashion. For instance,

{ema(x),pup(¥)} = enaembé(z)(xay)- (2.28)

This concludes our brief discussion of canonical gravity in the metric formal-
ism (for a much more thorough treatment, the reader is referred to ref. [1]).
To quantize the theory, it would now seem that all that remains to be done is
to replace the Poisson brackets (2.27) by quantum commutators, or equiva-
lently, the canonical momentum p,” (x) by the functional differential operator
—i1hd/demq (x). However, it is immediately clear that the equations obtained
in this way are highly non-linear, and that there will be severe operator order-
ing ambiguities. While it is still comparatively easy to solve the spatial diffeo-
morphism constraints by building wave functionals out of invariant integrals
of spatial curvatures over the space-like hypersurface, attempts at constructing
general solutions of the WDW equation appear completely hopeless. This leaves
us with the unappetizing possibility of truncating the WDW equation by only
retaining a finite number of degrees of freedom (such as, e.g., the radius of the
universe; this is the so-called “mini-superspace” approximation) or of resorting
to unilluminating weak or strong coupling limits where either the “kinetic term”
involving p? or the “potential” ¢R?~1) is discarded.

Before turning to the new formulation, one further point should be mentioned.
Even within the classical framework, and independently of the phase space vari-
ables one chooses, there remains a major unsolved problem in canonical grav-
ity, namely the construction of non-trivial observables in the sense of Dirac.
By such an observable we generally mean any functional of the phase space
variables that weakly commutes with all the constraints and does not vanish
on the constraint hypersurface (otherwise, the constraints themselves would be
observables). In other words, we would like to explicitly construct a phase space
functional O (e, p,™) for which

{Ho(x),0} =0, {Hn(x),0}=0. (2.29)

Unfortunately, for pure gravity, no such functional is known. The main cul-
prit for this sorry state of affairs is again the Hamiltonian constraint; since it
contains dynamics, the construction of observables would amount to the iden-
tification of “constants of motion” for Einstein’s equations. The lack of such
observables severely affects the quantum theory, where the notion of observable
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is indispensable for the physical interpretation of the formalism. As we will see
later, the situation is not quite as bad for pure gravity and supergravity in three
dimensions, which are topological theories, and matter coupled theories of (su-
per)gravity in higher dimensions which possess “hidden symmetries”. In both
cases it 1s possible to construct observables obeying (2.29).

3. Ashtekar’s variables

The preceding discussion has clearly led to an impasse, and at this point one
might be inclined to believe that some radically new idea is needed to make fur-
ther progress (such is the attitude of a die-hard string theorist). It was therefore
quite a surprise when, in 1986, Ashtekar discovered a new set of phase space
variables [14] in terms of which not only the non-linear constraints become
polynomial, but solutions to a/l the quantized constraints could be found [17].
These solutions are very different from the approximate solutions of the mini-
superspace approximation. It is plausible that their unfamiliar form and the fact
that they are difficult to interpret simply reflect genuine features of quantum
gravity, which we would anyhow expect to be very unusual. In this chapter,
we will present a (hopefully) pedestrian introduction to Ashtekar’s formalism,
although our treatment of the solutions will be rather cursory (these are exten-
sively discussed in recent reviews [2]). An important property (drawback?) of
the formalism is that, so far, it only works in space-time dimensions ¢ = 4 and
d = 3 (however, see ref. [18] for some speculations concerning d > 4). We
will first discuss the case d = 4, corresponding to the real (albeit empty) world.
The simpler d = 3 theory will be dealt with in the following section.

3.1. CONSTRUCTION OF THE NEW VARIABLES

The basic idea leading to the new variables is quite simple. Noticing that the
constraint generators (2.24) and (2.25) are schematically of the form “0w +
w? + p?” and “(J + w)p”, we will try to combine them into an expression of the
form “9 (w+p) + (w + p)?” by introducing a generalized connection field of the
form A = “w + p” (the “Ashtekar connection”), where p is just the momentum
variable introduced in (2.16). Let us therefore proceed from the ansatz

Ama = —%chwmbc + (Mﬁma, (3.1)

where
DPma = e”! (Pma + Pemap) . (3.2)

The coefficients « and S are to be determined. Defining a new covariant deriva-
tive D,, with respect to the Ashtekar connection (3.1) and evaluating it on a
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spatial Lorentz vector V,, we get
Dy Va = OV + €apeAmpVe = OmVa + Opp Ve + -+, (3.3)

where the dots indicate terms depending on p. As for the terms containing o,
this agrees with the usual Lorentz covariant derivative (it is for this reason that
we have inserted a factor of —% in the above definition). Note that the position
of the indices on p is not the one of (2.16). Obviously, it is the presence of the
epsilon tensor in this expression that forces us to put 4 = 4. The only other
possibility is d = 3 as we will see, but let us stick with 4 = 4 for the moment.
Since we would like A4,,, to be a proper canonical variable, we demand

{Ama(x), App(y)} = 0. (3.4)

Obviously, the terms that contain p and the ones that do not must vanish sepa-
rately. In appendix A we will show that

{Pma,Pnp} = 0 (3.5)
leadsto f = — % We will also show that there is a functional G[e,;,] such that
Ama = {ﬁmaa G} + aﬁma . (36)

Now it is easy to see that the 4’s commute: inserting the last equation into (3.4)
and making use of (3.5) and the fact that the first term in the commutator
depends only on e,,,, we get

{AmaaAnb} = a{{ﬁmaaG}3ﬁnb} _a{{ﬁnbaG}:ﬁma}
= a{{ﬁmaaﬁnb},G} =0, (3.7)

where, in the last step, the Jacobi identity has been invoked.

Since the requirement (3.4) does not fix the coefficient o, let us now analyze
the constraints in terms of the new variables (of course, we now assume that
they can indeed be reexpressed in this way!). We will first work out the field
strength of Ashtekar’s connection in terms of the “old” variables. This yields

Finna = OmAna — OnAma + €apcAmp Ane
= — 3€upcRmnbc + ¢ (Dmbna — DnDma) + *€apcDmpPnc . (3.8)
Contracting once with the inverse dreibein, we get
e Fruna = ce ' Dppn™, (3.9)

where the Bianchi identity R,,(s5c; = 0 and the Lorentz constraint have been
used. This i1s indeed proportional to the the diffeomorphism constraint. The
other possibility is

€abcea™es" Fyne = =R — 0% (pappas — $07) , (3.10)

which reduces to the WDW constraint upon multiplication by e and for the
values @ = +2i. Obviously, there are two possible choices for a, and hence two
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possible choices for the Ashtekar connection, which we label 4®). Note that
A and A7) do not commute. Observe also that « is imaginary, so Ashtekar’s
connection is complex. This is certainly an unusual feature as it is like choosing
g and z = g + ip as canonically conjugate variables in ordinary mechanics!
We must thus supplement the formalism by a reality constraint corresponding
to z + z = 2q in order to ensure that we end up with the correct number of
degrees of freedom. This extra constraint is a somewhat unappealing feature of
the formalism. There has been some confusion in the early literature whether this
could be a real problem, especially since the reality constraint in some examples
seems 10 be non-polynomial [21]. The consensus at present is that the problem
can be consistently dealt with by first analyzing the (complex) equations and
then imposing the reality conditions. It is anyhow clear that, at least at the
classical level, there should be no problem since the theory is still equivalent
to Einstein’s theory, which is known to be perfectly consistent. At the quantum
level, however, the problem is tied up with some as yet unresolved issues related
to the construction of a scalar product in the Hilbert space of quantum states.
There only remains the Lorentz constraint. Anticipating the final result, we
evaluate the fully covariant derivative with respect to 4 on ee,” to get

D (ee.) = Dy (e€,™) + e€apcDmpec™ . (3.11)

The first term vanishes by the covariant constancy of the dreibein (this is not
entirely trivial because the derivative D,, acts only on the flat index a; the
full covariantization is achieved by including the factor ¢). The second term is
nothing but the Lorentz constraint (2.17).

Finally, we have to identify the variable which is canonically conjugate to A.
It is just the “densitized” inverse dreibein dreibein ee,” introduced above. A
short calculation confirms that

{er (x), Dup(¥)} = —0ap0 3P (x,y) (3.12)
and therefore
(€7 (x), Ay (»)} = —2i6,467 6P (x,y), (3.13)

where we have defined e' = ee,”. To summarize, we have now succeeded in
reformulating the whole theory in terms of the new connection 4,," and its
canonically conjugate variable ¢/”. The constraints are simply given by

Sm a
ea mn ~ O ’

e“bcé;"ég e = 0,
Dmé™ = 0, (3.14)

and are thus manifestly polynomial unlike the original expressions (2.25) and
(2.24). This result constitutes a major simplification and facilitates the search
for solutions to the quantum constraints. An extra advantage is that we do not
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need to impose the requirement that the new variable e7* be invertible in con-
trast to the usual metric formalism, where both the metric and its inverse are
required for the formulation of the canonical constraints. This is in accord with
speculations [22] that prior to the emergence of a “semi-classical” space-time
characterized by a reference background metric, there should be a “topological
phase” of quantum gravity characterized by a singular vacuum expectation value
of the metric (or the vielbein). We also note that the above expressions provide
a realization of the canonical constraints of gravity on the phase space of an
SO(3) Yang-Mills theory (see, e.g., ref. [23] for a further discussion of this
point).

The original definition of the new variables [14,15] is actually slightly differ-
ent from the one employed above, although, of course, equivalent. To recover
the variables as defined there, we contract the densitized inverse dreibein and
the connection field A with Pauli matrices according to

6’::1? = é;ndaaﬂ s
Amaﬂ = Amaaaaﬂ P (315)

replacing Lorentz indices by spinorial SU(2) indices. The field é;';, is referred
to as a “soldering form” (it “solders” upper world indices to spinorial tangent
space indices). In terms of these variables, the Poisson brackets become

[E0 (), Ams (1)} = (20050, = 0updys )37 62 (x,). (3.16)

The reason for this slightly different choice is that Ashtekar’s connection can
be understood as originating from the four-dimensional spin connection: the
connection (3.15) is nothing but the “pullback” of the d = 4 spin connection
to the space-like hypersurface (this observation is also useful as a mnemonic
device). To see this, we contract the spin connection with a y matrix and write
the result according to

Omagy*® = OmabYap + 20 ma0¥a¥o - (3.17)

Using the formula w,p0 = £20(4p) and

. o 0 g? 0
Yab = —1gpc (OC Uc) > YoVa = < 0 o_a) > (3.18)

we just get Ashtekar’s connection. The freedom in choosing the sign of the coef-
ficient « precisely corresponds to the two chiralities of the spinor on which the
connection field acts.

The fact that two connections A4,,, have vanishing Poisson brackets, whose
direct proof was not entirely obvious, can now be regarded as a consequence
of this observation and the fact that the Lorentz covariant derivative appearing
In supergravity theories coincides with (3.3). As is well known (and as we will
see in sections 4 and 5), the invariance of the supergravity action under local
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supersymmetry transformations implies the existence of a further constraint,
with the time component of the gravitino acting as the Lagrange multiplier.
This constraint contains the combination Dy, w,, where D,, is the pullback of
the four-dimensional spin connection appearing in (3.17) and thus precisely
the covariant derivative with respect to Ashtekar’s connection. Since two local
supersymmetry transformations commute to give a translation, the canonical
bracket between two supersymmetry constraints should give rise to (amongst
other things) the diffeomorphism and the Hamiltonian constraints. In the actual
computation, these constraint operators arise from commuting two fermions and
must therefore be expressible in terms of the field strength (3.8). In other words,
consistency of the canonical formalism with local supersymmetry automatically
mmplies the results derived above!

3.2. SOLUTION OF QUANTUM CONSTRAINTS

As is well known, the quantization procedure consists in replacing the classi-
cal Poisson (or Dirac) brackets by quantum commutators, or, equivalently, in
replacing the momentum variables by differential operators. There is, however,
some ambiguity here since it is by no means clear for a highly non-linear theory
such as Einstein’s theory which variables one should replace in this way. For in-
stance, in the metric formalism discussed in section 2, the most natural choice is
to replace p,"” by —ihd /den,, as we have already discussed, but one could equiv-
alently choose to work with the inverse dreibein and its canonically conjugate
variable instead. It is also clear that different choices may be expected to lead to
inequivalent quantum theories, a phenomenon that is already known from flat
space quantum field theories [24]. In fact, it is precisely the hope that quantiza-
tion in terms of the new variables may lead to a theory that is somehow “better”
defined than quantum gravity in the metric formalism, which leads to basically
intractable equations. In this section, we will briefly discuss the construction of
solutions to the Hamiltonian constraint. The first solutions of this type were
obtained in ref. [16]; unfortunately, they are not annihilated by the diffeomor-
phism generator. Nonetheless, that work constituted considerable progress, since
it was the WDW constraint which had resisted all previous attempts at solution,
not the diffeomorphism constraint. In subsequent work [17], a more abstract
framework was introduced, where from the outset one deals with diffeomor-
phism invariant objects (knot and link classes). This requires the consideration
of yet new and more exotic phase space quantities, the “loop variables™, and the
reformulation of the constraints and the canonical brackets in terms of them.

In accordance with ref. [16], we take Ashtekar’s connection as the basic vari-
able and replace

el (x) — —0/0Amg(x) (3.19)
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(we set i = 1). An unusual feature is that the inverse densitized metric is now
represented by a differential operator, i.e.,

) 0
OAma(x) 0Apg(x)”

To obtain the metric itself, one would thus have to solve this relation for g,,,—
clearly not an easy task! In addition, there may be a problem with short distance
singularities resulting from the clash of two functional differential operators at
coincident points, which will show up in a factor §¥) (0). We will ignore this
difficulty for the moment, but it is plainly evident that whatever solutions to the
quantum constraints can be found, they will not be easy to interpret.

In making the transition to the quantum theory, we must also decide how to
order the operators. For instance, it will now matter whether the differential
operators in the Hamiltonian constraint are placed to the left or to the right of
Fna(A4). The first possibility was considered in ref. [15], whereas the second
one underlies the work of ref. [16]. We will adopt the second prescription and
put the operators to the right for the moment. With this choice of ordering, the
WDW constraint becomes

(3.20)

gg™(x) =

0
OAma(x) 0Au(x) '

For the construction of solutions it proves convenient to first consider the
Lorentz constraint. As is well known, the basic Lorentz invariant wave func-
tionals are the Wilson loops. We parametrize a closed loop 7 by a function
»M(s); the parameter s is normalized by requiring y(s) = y(s + 1) (we will
assume the function y(s) to be periodic in s, so that the base point of the loop
can be freely shifted). The Wilson loop is

eabcééné[’;anc — 6achmnc(A(X)) (3.21)

¥, [A4] .—_TrPexp}{A, (3.22)
y

where P denotes path ordering from right to left along the orientation of the
loop (the dependence on the base point of the loop drops out in the trace).
To evaluate the functional derivatives on this expression, we need a little more
notation; we define

U, (s',s) EPexp/dtjzm(t)Am(y(t)), (3.23)

so that %, [A] = TrU,(1,0) -[for the sake of clarity, we will sometimes write
(3.23) as U(y(s"),y(s))]. U,(s + 1,s) is therefore the holonomy at the point
y (s) defined by parallel transporting the connection 4 = dx™ A4,,,6% from y(s)
to y(s + 1), i.e. once around the loop y.
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Acting twice on the Wilson loop functional (3.22) with the operator (3.19),
we obtain
) o
5Ama (x) 5‘4nb (y )

P [A] (3.24)

1 K
_ /dsi"”(s) /ds/ ()6 (x,7(5))0D (3, 7(57))
0 0
xTr( L,,(1,s')aaUy(s’,s)a,,Uy(s,0))
1 s
+/ds;’»"(s>/ds’ 76 (3,7 ()8 (x,7(5'))
1] 0

x Tr(Uy(l,s’)abUy(S’,S)aaUy(s,O)> . (3.25)

When x and y coincide, this expression becomes syminetric in the indices a
and b, and m and n, respectively. To take care of the divergent factor 62 (0)
which arises in this limit, one regulates the J function, for instance by fattening
the loop into a sausage [16]*2. We now see that the above expression vanishes
upon contraction with the factor €. Finne by antisymmetry. It is easy to see that
this mechanism does not work for the diffeomorphism generators, for which
the field strength is not contracted with an antisymmetric tensor, as is evident
from (3.14). The Wilson loop is thus annihilated by the Lorentz constraint and
the WDW constraint, but not invariant under diffeomorphisms. It may seem
paradoxical that a solution of the WDW constraint does not also solve the dif-
feomorphism constraints, since it is known that—at least at the level of Poisson
brackets—the commutator of two suitably weighted WDW operators should pro-
duce amongst other things a spatial diffeomorphism. However, detailed analysis
shows that this is not quite true because of ordering subtleties [16]: the struc-
ture functions (nof constants!) on the right hand side of the commutator appear
to the right of a differential operator, and therefore give rise to extra unwanted
contributions. This is a direct consequence of our choice of operator ordering *3 .

#2 Evidently, this regularization must preserve the symmetry under interchange of a and b, or m
and n, since otherwise any result can be obtained. This is a weak point in the argument.

Experience with string theory teaches us that we should even anticipate difficulties of this
kind. The Virasoro algebra, which is nothing but the algebra of the canonical constraints
associated with reparametrization invariance on the two-dimensional world sheet, contains
an anomalous central term that is rooted in very similar ordering ambiguities. The central
term is, in fact, responsible for much of the non-trivial structure of string theory, as is well
known {7}. Moreover, because of the central term, it is inconsistent to impose the full set
of Virasoro constraints on the physical states; rather one uses only half of them in a Gupta-
Bleuler formulation. There is consequently no reason to expect that the ordering problems
of canonical gravity in four dimensions can be easily resolved; on the contrary, one would

#3
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To overcome the difficulties with the diffeomorphism constraint and to con-
struct solutions to a// the constraints, one might now try, for instance, to “av-
erage” the wave functional ¥, [A4] over all loops which are diffeomorphic to .
This is, however, a difficult task to perform in practice, since no suitable (and
manageable) measure in the infinite-dimensional space of diffeomorphisms is
known. A better way out, proposed in ref. [17], is to switch from the above “con-
nection representation” to the so-called “loop representation”, where the basic
objects are no longer functionals of the Ashtekar connection and their canoni-
cally conjugate variables, but of loops (or knots and links). Although there is no
room to discuss this approach in detail here, we sketch the basic idea. To begin
with, one considers new variables in phase space in addition to the Wilson loop,
namely loops with multiple insertions of the canonical variable €' along the
loop. To systematize the notation, we denote the basic Wilson loop by 7°[y],
and define generalized loop variables 7" with n insertions of €7 at the points
v(51), ..., 7(5,) on the loop (which we assume to be “time ordered” from right
to left along the orientation of the curve) by

T Sny ey SP ] = TrUy(l,Sn)é;r:"(V(Sn))aa"Uy(5n35n~l)"‘
x Uy (s2,51)€0 (7 (1)) U(s1,0) . (3.26)

An important result is that, with respect to the Poisson brackets, these loop
variables form a closed algebra. If two loops do not intersect, the Poisson bracket
of the corresponding loop variables clearly vanishes; otherwise, the result is
a linear combination of loop variables which are based on new loops formed
by joining the loops at the points of intersection (see ref. [17] for a detailed
description of the rules). The strategy is now to “forget” how these variables
were derived and how their Poisson brackets were computed, and to take the
loop variables and their associated Poisson algebra as fundamental. In this way
one arrives at a formulation which no longer makes reference to the original
phase space variables (this transition to a new representation can be thought of
as some kind of Fourier transformation).

An advantage of this proposal is that one is working with diffeomorphism
invariant objects (knots and links) from the outset. On the other hand, it is now
much more difficult to obtain explicit representations of the quantities one is
dealing with, since all operations must be defined in terms of loop variables. For
instance, the WDW operator is no longer given by an explicit expression like
(3.14), but rather as a kind of area derivative of the loop [17]. Quantization
now also works in a different way. Rather than to replace the original phase
space variables e7* and A4,,° by differential operators, one “quantizes” the loop

expect the requirement of closure to give rise to severe constraints on the allowed theories,
as is the case in string theory. This point has also been emphasized by F. Englert (private
communication).
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algebra directly by replacing the Poisson brackets of 77 by quantum commu-
tators. The resulting quantum theory is quite different from quantum gravity
in the connection representation. Since invariance under diffeomorphisms and
local Lorentz transformations have been built in from the start, it only remains
to verify that the WDW constraint is satisfied. This requires a bit of technical
trickery which we will not go into here, however.

Before closing this section, we would like to mention a potentially serious
drawback of all these solutions, which was first pointed out in ref. [25]. As it
turns out, all of them are annihilated by the operator representing the dreibein
determinant! This is most easily seen in the connection representation, where
the metric determinant is represented by the operator

) ) )

8(X) = CavcComn 5= 5y (8) 547 (%) (3.27)

This operator annihilates the Wilson loop for the very same reason that en-
sured the vanishing of the WDW operator on it, namely the fact that one is
contracting a symmetric tensor with an antisymmetric one (the problem with
the factor 3 (0) is argued away as before). Furthermore, the difficulty cannot
be circumvented by allowing for solutions involving linear combinations of an
arbitrary number of kinks and self-intersections of the loops as well as (finite)
linear superpositions of multiple loops {25]. Although one might think that the
degeneracy of the metric is not really such a serious problem because the met-
ric (and hence its determinant) is not an observable, this means in particular
that the above expressions solve the constraints regardless of the value of the
cosmological constant and thus cannot distinguish between physically very dif-
ferent situations! It is therefore somewhat doubtful whether these solutions are
the appropriate ones for the description of conventional physics.

These unsatisfactory features and the desire to find non-degenerate solutions
have motivated recent work which is based on the opposite operator ordering
prescription (i.e., the differential operators in (3.21) now appear (o the left of
the field strength F'). Namely, it can be shown that the exponential of the Chern—
Simons action muliplied by the inverse of the cosmological constant solves the
WDW constraint with a cosmological constant [26] [the WDW operator is
then just the sum of the original expression (3.14) and a term Ag(x), which
is represented by the operator (3.27)]. This solution is very different from the
ones considered above as it is supported on all of the space-like hypersurface,
and not just on closed loops. Moreover, it is clearly non-degenerate because it
is not annihilated by the operator Ag (x). It is then also possible to obtain non-
degenerate solutions in the loop represenation. It can be shown that the loop
transform, i.e. integration over all connections for a given closed loop y (with
the exponential of the Chern-Simons action playing the role of the factor e**
for ordinary Fourier transformations) leads to knot and link invariants [27].
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Although this result is not completely unexpected in view of the results of ref.
[28], it does point to an intriguing and beautiful connection between quantum
gravity and knot theory. A further discussion of these issues is unfortunately is
beyond the scope of these lectures.

4. Canonical gravity and supergravity in three dimensions

Instead of further dwelling on the four-dimensional theory, we will now take a
step back and consider gravity and supergravity in three space—time dimensions
(for a general introduction to supergravity and many references, see ref. [6]) #4.
The main reason is that the three-dimensional theories provide a setting for the
formalism which from our point of view is more natural in several respects. Most
importantly, pure gravity and supergravity are topological theories in three di-
mensions, which means that they do not possess propagating degrees of freedom
[22]. Bona fide solutions to all constraints can be found. In addition, genuine
observables in the sense of Dirac can be constructed: they are just given by the
three-dimensional analogs of the loop variables introduced in the foregoing sec-
tion and their supersymmetric generalizations. As a consequence, the solutions
to the quantum constraints can be directly obtained by applying the observables
to a suitable “vacuum” functional, which is just 1 in the bosonic case, and given
by formula (4.41) below in the case of supergravity. A technical advantage is
that there is no need for a reality constraint in three dimensions.

Three-dimensional gravity and supergravity have already been studied in the
past. The “physics” of pure gravity (absence of gravitational excitations in empty
space, conical singularities at the locations of mass sources, etc.) were first exam-
ined in refs. [30-32]. Since Einstein’s action is superficially non-renormalizable
in three dimensions, the theory was for a long time thought to make no more
sense as a quantum theory than gravity in four dimensions. The fact that pure
gravity in three dimensions is a topological theory with a finite-dimensional
phase space and hence can be solved completely came thus as quite a surprise
[22]. An essential ingredient in that construction was the reformulation of Ein-
stein’s theory as a Chern-Simons gauge theory. This new version of the theory
and the Wilson loop observables were further studied in refs. [33-35]. In this
is section, we will, however, not make use of this formulation, but rather adopt
the version of ref. [36], which is a direct extension of Ashtekar’s formalism to
pure gravity in three dimensions, and hence closer to the main subject of these
lectures. Needless to say that the “physics” is the same in both formulations.
As for supergravity, our results are also not entirely new, with the exception of

#4 The first canonical treatment of supergravity in four dimensions was given in ref. {29]. In the
context of Ashtekar’s new variables, it was first discussed in ref. [21].
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the solutions to the quantum supergravity constraints presented in section 4.2.
Wilson loop observables in supergravity were already studied in ref. [37]. How-
ever, that work uses a superspace formulation, so the Wilson loop is defined as
a supertrace, whereas it is explicitly written out in components here. Further-
more, our observation that the fermionic topological modes are related to (the
fermionic part of) super-Teichmiller space appears to be new.

As for notation, we will switch gears slightly by now using Greek letters g4, v, ...
for curved indices in the three-dimensional space-time of signature (— + +),
but will continue to use letters a, b, ... for the tangent space indices transforming
under SO(1,2), which now of course will appear as upper and lower indices.

We will use the Levi-Civita tensor with €92 = —¢g, = +1. Also, we will use
letters i, j, ... to denote space-like (now two-dimensional) curved indices, and
letters «, B, .... = 1,2 to denote spinor indices transforming under SL(2,R) =

SO(1,2).

4.1. LAGRANGIAN, CANONICAL VARIABLES AND CONSTRAINTS

One of the main benefits of the discussion in the the preceding section is
that we do not have to repeat the laborious derivation of Ashtekar’s connection
from the metric formalism given there. Rather we will now make a shortcut by
exploiting the fact that this connection coincides with the pullback of the spin
connection to the (now two-dimensional) space-like hypersurface 2, making the
usual assumption that the three-dimensional space-time is topologically equiva-
lent to R x 2, where 2, a is two-dimensional manifold (Riemann surface) with
g handles. It is convenient to use the (first order) dualized spin connection

A" = =5 w0y, (4.1)

in terms of which the Lorentz [i.e. SO(1,2)] covariant derivative acting on a
two-component spinor € reads

Dye = (94 + $radd) €. (4.2)

. The other relevant variable is, of course, the dreibein ¢,%. Observe that, in con-
tradistinction to the four-dimensional case discussed before, we do not commit
ourselves to a special Lorentz gauge for the dreibein here; this means that instead
of a subgroup of the full Lorentz group we retain the full Lorentz group in three
dimensions, which is SO (1, 2). The fact that we are dealing with SO (1, 2) rather
than SO(3) is the principal reason that we do not have to impose a reality con-
straint in this case because the spinor represention SO(1,2) [which is nothing
but SL(2,R)] is real. One can use the y matrices yy = igy, y; = 0y and y; = 03,
which leads to

Ya¥p = nabl - 6abcyc- (43)
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For the field strength, we have the same formula as before, but with a different
sign for the quadratic part:

Fuva = —eanc R’ = 8yAva — 8, Aya — €apc Ay A,° . (4.4)

Using the three-dimensional Levi-Civita tensor density, we can now write down
the gravitational action

L=1eR=}e"Pe,°F,,,. (4.5)

Varying this action with respect to the dreibein, we see that the field strength
F,., must vanish, in contrast to the four-dimensional situation, where the field
strength is non-zero in general. Hence, the connection 4,“ is pure gauge, at least
locally. This shows explicitly that gravity in three dimensions has no propagat-
ing degrees of freedom. However, there may be topological degrees of freedom
because, globally, the solutions can be non-trivial in the sense that there does
not exist a globally defined function g such that A4, = g710,¢.

The N = 1 supergravity Lagrangian is a simple extension of (4.5), since we
only need to add a Rarita—Schwinger-type action to it. The Lagrangian reads

L = ehvr (%e”apypa + %V/‘uDyl//p) . (4.6)

Here y, is a two-component Majorana spinor, i.e., ¥ = w1C, where C is the
charge conjugation matrix. The covariant derivative D, has been defined in
(4.2). In addition to being invariant under general coordinate and local Lorentz
transformations, the above Lagrangian is invariant under the local supersymme-
try transformations

oy, = Dye, de,* = ey*yy; 04,° = 0. (4.7)

As the Rarita-Schwinger term is independent of the dreibein, the previous
equation of motion Fy,, = O for the dreibein remains valid, and therefore the
field A is still pure gauge locally. The Rarita—Schwinger equation €#*?D, y, = 0
implies that the gravitino field, too, is locally pure gauge, so that the theory de-
scribes only topological degrees of freedom. Thus we can always find a locally
defined spinor ¢ such that y, = D,¢. An obstruction only arises if the spinor
¢ cannot be globally defined. In this case y, depends on finitely many “super-
moduli”, so the theory still lives on a finite-dimensional phase space. Variation
with respect to the connection 4, tells us that the covariant derivative of the
dreibein is equal to a fermionic bilinear (torsion); this equation can be solved
for 4,% in terms of the dreibein and the fermionic torsion (“second order for-
malism™).

To derive the Hamiltonian, we write the space and time components of (4.6)
separately:

£ = ¢ (§eFija = Yo Fija + WDy, - 17,0 - (4.8)
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The canonical momenta associated with the bosonic fields read (here i, J, ...
denote two-dimensional vector indices)

vt =06L/86° =0, I =8L/54,° =0, (4.9)
pat =6L/8¢" =0, I =6L/64" = Lee,, (4.10)
and the fermionic momenta are («, f,... = 1,2 are two-dimensional spinor

indices; we use the convention that spinor derivatives always act from the left)

ﬁlu = 5‘6/5!/./1(1 = 07 (411)
Ty = 0L/0Wia = —3€V%,. (4.12)

Observe that I7,' and p,’ are rectangular (3 by 2) matrices. The constraints
(4.10) and (4.12) are second class. So we have to replace the Poisson brackets by
Dirac brackets and then use these constraints to eliminate, e.g., p,', 17, and 7'.
Doing this, we get the Dirac brackets (labeled by an asterisk) for the remaining
canonical variables,

I

{Wia (X), wip()}e = €€ g0 P (x,p), (4.13)
{e(x), 4" (1)}e = 2e,m®6 P (x,y). (4.14)

Observe that ¢;; is a density of weight —1 and the J-function is one of weight
+ 1. The secondary constraints induced by (4.9) and (4.11) are

Ho = 0L/0e* = Le' Fjq, (4.15)
Lo = 0L/0A4,% = €' (D,»e,,, _ W,.y,,q/,) , (4.16)
Sy = 0L/6W,, = €'DiWja, (4.17)

which are now first class with reference to the Dirac brackets. The Hamiltonian
1s

H= —¢"H,— AL, - ¥,S. (4.18)
The generator of spatial diffeomorphisms has a very similar form,
ei°Ha + AL, + W,S. (4.19)

It is also elementary to verify from the canonical brackets given above that
the variations of the fields under the respective local symmetries are indeed
canonically generated by the constraints (4.15)-(4.17), possibly up to terms
proportional to the constraints; for instance, with S[e] = [ €S,

deyi(x) = {Slel.wi(x)}, (4.20)

and so on.
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4.2. OBSERVABLES AND QUANTUM STATES

Before considering the quantum theory, we examine the classical observables.
According to the definition given in section 2, such observables must weakly
commute with the canonical constraints. From the discussion at the end of the
preceding section, we know that the brackets of the constraints with any func-
tional of the phase space variables just give the variations of this functional under
the corresponding local symmetries, possibly up to terms vanishing on the con-
straint hypersurface. Hence, the observables must be invariant functionals with
respect to spatial diffeomorphisms, local Lorentz rotations and supersymmetry,
and this is the definition which we will employ in the sequel. To streamline the
subsequent discussion somewhat, we will use differential forms in the remainder,

e? =dx'ef, A% =dx'A”, w =dx'y, (4.21)

which represent sections of vector or spinor bundles over the two-dimensional
space-like hypersurface. We find it convenient to define A = %yaA“, which under
local Lorentz rotations transforms as 4(x) — A~ '(x)(d + A(x))}h(x) with a
globally defined 4 (x) € SL(2,R) (the contracted dreibein %yae“ transforms
in exactly the same way). Since the constraint (4.15) implies flatness of the
connection A, we conclude that 4 = g~!dg locally for some matrix function
g (x) taking values in SL(2,R) [under gauge transformations we have g(x) —
g{(x)Yh(x)]. The non-triviality of the flat connection A is “measured” (and, in
fact, completely characterized) by its holonomies around non-contractible closed
loops y. If the holonomy is non-trivial, i.e. different from unity, g (x) cannot be
extended to a globally single-valued function: if we start at some point y (s) with
a matrix g(y(s)) and transport it around the non-contractible loop y, we end
up with a different matrix g(y(s + 1)) = g,g(y(s)) with some g, € SL(2,R)
(notice that g, appears fo the left as A = g~!dg is single-valued around y). It
is now completely straightforward to evaluate the path ordered exponential for
an arbitrary curve C starting at x and ending at y (we use the same notation as
in section 3.2). We have

y
Uc (. x) = Pexp —/A = g0 g (x). (4.22)

X

Under a local Lorentz transformation, Uc (y,x) — h(y)~'Uc (v, x)h(x). Thus,
closing the loop by shifting the point y around the loop back to the base point
X, we arrive at

U, (x) = Pexp _7{/1 =g ()ge(x), (4.23)
()'
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whose trace depends only on g,. This trace is Lorentz invariant by construction,
but it is easy to see that it is also invariant under diffeomorphisms and supersym-
metry. Diffeomorphism invariance follows from the flatness of the connection
A, which allows us to continuously deform the loop without changing the value
of (4.22). Supersymmetry follows trivially from the invariance of 4 under the
local supersymmetry transformations (4.7). Consequently, the Wilson loop ob-
servable needs no modification in supergravity. In passing, and already with an
eye towards the discussion in section 4, we note that diffeomorphism invariance
of the Wilson loop (and the other observables as well) is lost as soon as mat-
ter couplings are switched on, since the field strength then no longer vanishes,
and the Wilson loop picks up extra contributions when y is deformed (by the
non-Abelian Stokes theorem ). It should thus be kept in mind that pure gravity
and supergravity in three dimensions represent a rather special situation, and
that the results may have no relevance to the real world, which is filled with
propagating and not just topological degrees of freedom.

Observables depending on the canonical variable 7, or, equivalently, on the
dreibein form ¢4, also exist, as we already know from our brief discussion of loop
variables in section 3.2; the difference is that these phase space functionals are
now genuine observables in the connection representation. We will write these
observables in the form

O = %w (4.24)
¥

with locally Lorentz invariant closed one-forms w on the space-like hypersurface
(we will not explicitly indicate the dependence of the one-form on y). Closure
1s required because we must have fc w = 0 for a contractible closed loop C;
this means that the value of § o is unaffected by continuous deformations of
the loop y, which is just another way of expressing the invariance under spatial
diffeomorphisms. Invariance under local supersymmetry holds whenever the
one-form varies by the exterior derivative of a single-valued function f, i.e.,
dew = df with f(y(s + 1)) = f(y(s)) for an arbitrary closed loop y because
then c § w = ¢ df = 0. For pure gravity (not supergravity), an appropriate
one-form can belimmediately deduced from the results of section 3.2; it is

oV yix] = e;dx T [p:x) = TrU, (y(1), x) 7% () Uy (x,7(0)), (4.25)

where 7 is again a non-contractible closed loop along which x varies. Lorentz in-
variance follows because y,¢¢ transforms according to the adjoint representation
under Lorentz transformations, and closure follows from

doV(x) = TrU, (y (1), x)y.De® (x)U,(x,y(0)) = 0, (4.26)

since De? = 0 is just the Lorentz constraint in pure gravity [in the explicit
computation, we use the well-known formulas dU, (-, x) = U,(-,x)4(x) and
dU,(x,") = ~A(xX)U,(x,)].
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Unlike (4.23), however, (4.25) must be modified in supergravity, because
De? = %Wy“t// # 0 and e is not invariant under local superymmetry anymore.
We now find (with w = dx’ w;)

S (x) = @2 (x) Tr Uy (y (1), x)7.Uy (x, 7 (0))
= e(x)Uy(x,7(0)) Uy (y (1), x)wi(x)
— ¥ () Uy (x, (0)) Uy (7 (1), x)e (x)
= T(x0)g ' (X)grg(x)e(x) —€(x) g (x)gg(xX)wi(x), (4.27)
where we used the formula U (x,7(0))U(y(1),x) = U,(x) = g~ 1(x)gg(x),
the Fierz identity
VagVays = Opy0as — Cya' Cps (4.28)
and the relation C~'gTC = g~! for g € SL(2,R). Moreover, the one-form !
1s no longer closed since

D (X) = =T U, (x,7(0) U, (y (1), x) )y (x)

= -V (xX)g N (xX)gg () (x), (4.29)
where we used the Lorentz constraint and the Fierz identity once more. To cancel
these contributions we must now construct a one-form w® depending on the
gravitinos as well.

The desired extension is obtained by adding the one-form w? (x) = dx’ x
wfz) (x) with

y(1)

o) = - [ WIT 00w (4.30)

X

X
- [ ST OGO G MK (331)
y(0)
to w (note that the points x and y(0) = y(1) are connected “along different
sides” of the loop 7 in the two terms). Defining w = w” + w?, and making
use of the supersymmetry constraint Dy = 0, it is straightforward to show that
dw = 0 and ,w = df, where the function

y(1)
f(x) = /dyfw,xy)uy(y,x)e(x)

X

+ [ @ 700000 @32)
y(0)

is globally defined, as is most easily seen by again expressing U, in terms of
g(x) and g,. We note that §, w® = 0 if there exists a globally defined spinor
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¢ such that ¥ = D¢. This can be seen by inserting U, (y,x) = g 1(y)g(x)
and g(x)D;¢(x) = 9;(g¢(x)) into the definition of w‘?) and then integrating
over y, which gives a total derivative. Consequently, this observable “sees” only
the topologically non-trivial part of the gravitino. This is completely analogous
to the result that the holonomy is unity for trivial gauge connections, where
A = g~ 'dg with globally defined g(x). We mention that the observables for
supergravity coincide with those constructed from a “super Wilson loop™ in
a superspace formulation of supergravity [37], but so far they have not been
explicitly written out in componenis.

The observables that we have constructed are therefore sensitive only to the
topological excitations, of which there are only finitely many independent ones
for a given surface of finite genus, and it is thus appropriate to recall how many
degrees of freedom they represent. For the bosonic theory it is known that, on
a surface of genus g > 2 and for an arbitrary gauge group , the dimension
of the space of non-trivial flat connections modulo gauge transformations is
(2g — 2)dim G *>. This follows from the relation [T, 8,0, '8 = 1 for the
non-trivial homology cycles, with the corresponding relation [] g., & ,g,jj‘g/;]‘ =
1 for the holonomies, which removes dim G degrees of freedom; another dim ¢
degrees of freedom are removed by conjugating all holonomies with an arbitrary
SL(2,R) matrix. However, one must be a little careful because this counting
argument only works for generic matrices, and in certain special cases there may
be extra solutions. Such is the case for genus g = 1 (the torus), where the
dimension is 2 rank G #¢: for g¢ = 0 (the sphere) there are no non-trivial flat
connections.

As for the non-trivial gravitino modes, the result is perhaps less well known,
so we explain it in a little more detail. In a given background characterized by
the flat connection 4 == g~ !'dg, the supersymmetry constraint is D(A)y = 0,
which is equivalent to the equation (in components)

(‘)[,(g(x)(//j](x)) =0. (433)
This means that, at least locally, we can always find a spinor ¢ (x) such that
g(x)wi(x) = 0;p(x). (4.34)

Imposing the periodicity constraint y,;(y(1)) = w,;(y(0)) for any non-trivial
cycle y and using the previous results, we obtain the condition

& ' p (1)) = d(r(0)) + ¢y (4.35)

#¥5 Since dim SL(2,R) = 3, the dimension is 6g — 6, which suggests that the moduli space of flat
SL(2,R) connections is directly related to Teichmiiller space. The precise relation is explained
in ref. [38].

#6 A detailed discussion of this case may be found in ref. {36].
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Here ¢, is a constant spinor that represents the obstruction to defining ¢ glob-
ally on the surface. In other words, this spinor is the fermionic analog of the
holonomy g,. Just as the holonomies, the constant spinors ¢, are subject to a
relation that follows from the constraint on the homology cycles. To obtain it,
we simply iterate (4.35) by transporting ¢ (x ) around the homotopically trivial
curve [Ja;Bja; ' B, demanding that ¢ (x) return to its original value in this
process. Since the spinor has two components, this removes two degrees of free-
dom; another two can be subtracted by noticing that (4.34) is invariant under
constant shifts ¢(x) — ¢(x) + ¢g, which leads to ¢, — ¢, + (gy‘1 — 1) .
Altogether, we arrive at the result that the space of fermionic moduli has di-
mension 4g — 4, which suggests that it is nothing but the fermionic extension
of Teichmiiller space (again, we have to keep in mind that the counting works
only for the generic case, so the result for the torus is different).

Remarkably, the observables found here enable us to find genuine solutions to
the quantum constraints as well. Namely, upon making the usual replacement of
the phase space variables by operators, we need only identify a suitable “vacuum
functional”, which is annihilated by the constraints, and which, for the bosonic
theory, is simply ¥;[A4] = 1 (for supergravity, it is slightly more complicated,
see below). Collectively denoting the observables by O/, we then obtain further
solutions by applying these operators to the vacuum functional according to

PA] = [JoV®[4]. (4.36)

This shows that, at least for gravity and supergravity in three dimensions, the
quantum states are in one-to-one correspondence with the observables [22,36].
The theory 1s quantized in the usual way by the replacement

' (x) — —16/64,°(x). (4.37)

The corresponding replacement for the gravitino is slightly more subtle: the op-
erator realization of the Dirac brackets (4.14) necessarily breaks either manifest
Lorentz or reparametrization invariance because the spinors are Majorana (self-
conjugate). We take 1, = i, as the basic variable (1 is a world index); it is
an anticommuting element of a Grassmann algebra. The anticommutator corre-
sponding to the Dirac bracket is then obtained with the functional differential
operator (always assumed to act from the left)

Wra(x) =16/0n.(x) = —1Copd/0np(x). (4.38)
The operatorial realization of the supersymmetry generator reads
S =Dy—1D,d/on, (4.39)

where we have now suppressed the spinor indices. The Lorentz constraint be-
comes

Lo = 2iD;3/5 A% + 1746/07. (4.40)
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A non-trivial solution to the quantum constraints can now be constructed by
first solving the supersymmetry constraint S¥[4,5n] = 0, which is the “square
root” of the WDW equation, as it is first order in the functional differential
operators. Set 1 = D¢ and define the vacuum wave functional

Y[A,n] = exp (%ifdanleqﬁ) ) (4.41)

Using the fact that [D;, D,] = O for flat connections A, it is now quite straight-
forward to show that (4.41) is indeed a solution. To establish invariance under
local Lorentz transformations, or L,¥ = 0, we must keep in mind that there is
a hidden dependence of ¢ on 4 which can be deduced from

9
WD1¢(.V)

_ 5o (y)
= Do

As before, further solutions can now be constructed by operating on this vacuum
state with the observables given above.

As a final remark, let us note that the basic trick of generating solutions from
a vacuum state by means of observables is, of course, not limited to topolog-
ical theories, but can also be applied in more general circumstances. For this,
however, it is first of all necessary to identify suitable observables, and this may
be a difficult task as we have explained before. Even if one succeeds in finding
observables, there may remain problems. Above all, one must make sure that
there are no quantum anomalies in the algebra of constraints and observables
(since otherwise, it may no longer be true that (4.36) solves the constraints even
though ¥, does). Furthermore, one should make sure that the observables form
a complete set, since otherwise one may not find all solutions. A nice feature of
three-dimensional pure gravity and supergravity is that neither of these problems
show up, so these theories can be solved completely.

g _
O= 5Ala(x)'7(y) -

+ 100D (k). (4.42)

5. Matter coupled supergravity

A obvious defect of the models discussed in the previous section is the absence
of physical (propagating) degrees of freedom. Although the four-dimensional
theory discussed in section 2 does have propagating degrees of freedom (the
helicity £2 states of the graviton), there it is difficult to include matter as well.
The problem here is not to show that the constraints can be cast into a poly-
nomial form but rather the fact that the whole edifice erected around the loop
variables collapses as soon as any matter degrees of freedom are present; the
formal solutions to the quantum constraints cease to be solutions, and it seems
clear that no simple modification of the loop solutions can remedy this defect.
Our aim in this section is to study theories with matter, the simplest ones being
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the non-linear SL(2,R)/SO(2) non-linear ¢ model in three dimensions and its
locally (N = 2) supersymmetric extension. These are the dimensionally reduced
versions of pure gravity and supergravity in four dimensions, respectively (see,
e.g., refs. [39,40] for further details of dimensional reduction, and ref. [41] for
a recent discussion of extended supergravities in three dimensions).

Although the actual supergravity Lagrangian is quite complicated there are
three essential features that may eventually enable us to make some progress.
First of all, the supersymmetry constraint can be regarded as the “square root” of
the WDW operator and one can hope that the corresponding quantum constraint
may be easier to solve (this idea is not new; see, e.g., ref. [42] for another
attempt to exploit it). We will see explicitly that the familiar ordering problems
are completely absent in the supersymmetry generator; this is the analog in
quantum supergravity of the result that the vacuum energy in supersymmetric
theories vanishes [43]. Moreover, all other constraint equations follow from
the supersymmetry constraint, provided there are no anomalies in the quantum
algebra of constraints. The second new feature is the presence of the “hidden
symmetries”. There is a conserved Noether charge, which is an observable in
that it weakly commutes with the constraints. In the quantum version of the
theory, this charge at least in principle allows us to construct new solutions from
old ones by repeated application of the charge operator to any given solution (as
we already saw in the last section). Our intention here is to study the simplest
non-trivial example, N = 2 supergravity in three dimensions; this theory can be
alternatively obtained by dimensional reduction of simple supergravity in four
dimensions [44,6]. This provides a simpler version of the canonical treatment
of extended supergravities than the one given in ref. [18].

5.1. N = 2 SUPERGRAVITY IN THREE DIMENSIONS

In this section, we construct an N = 2 supergravity Lagrangian which de-
scribes the interactions of gravity and two gravitinos with one matter multiplet
corresponding to the propagating helicity £2 and i% states of simple super-
gravity in four dimensions. We start by adding a second gravitino to (4.6), so
that

Loray = €47 (%e#apra + %WLDW}) , (5.1)

where / = 1,2. To avoid cumbersome notation, we combine the two Majorana
spinors ¥, into a single complex one v, = (w, + iy2)/v2 (with analogous
definitions for the other spinors below), and rewrite the action as

Loray = €47 (%eﬂa Fupa + W”D,,y/,,) (5.2)

[note that (5.1) and (5.2) differ by a total derivative]. This action is again in-
variant under local Lorentz rotations, diffeomorphisms and the supersymmetry
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transformation
OeWu = Dye,  dce = €y?yy —Wﬂyaf, (5.3)

which corresponds to (4.7) with the real (Majorana) spinor ¢ replaced by a
complex one. In addition, it is invariant under a global U(1) symmetry ¥
ey. This extension of the N = | supergravity Lagrangian still contains no
propagating degrees of freedom and, in fact, exists for arbitrary N.

To couple this system to matter (i.e. propagating degrees of freedom), we
must convert the global U (1) symmetry into a local one and introduce a gauge
connection Q,, which (in second order formalism) is a composite field made
out of the matter degrees of freedom. Assigning a U (1) charge «« (which will be
determined shortly) to the gravitino, the covariant derivative D, on the gravitino
reads now

D,u‘//V = VﬂWu + %Aua]}au/u - i”Q,uWu . (5.4)
Although D, is defined to be the full covariant derivative here, the Christoffel
connection can be dropped when the derivative acts on the gravitino because of
the antisymmetrization of indices, as is well known [6].

The action (5.2) with the derivative (5.4) is now invariant under the local
U (1) transformations

V= eiaq‘//u’ Q/z = Qu + dug, (5.5)

but since the commutator of two D,’s gives an extra term proportional to the
field strength Qu, = 0,0, — 0,Qu, Lgrav 1s no longer invariant under local
supersymmetry transformations (5.3). Instead, we find

S Lgray = —iae™? [§ (Wye =€) Qup + T, 040.0] (5.6)

Here the term containing J. O, must be kept if Q,, is regarded as a function of the
scalar fields, but can be dropped if Q,, is treated as an independent field and its
equation of motion is used. Of course, ¢ must have the same U (1) charge « as v,
because otherwise the transformation law (5.3) would not be U (1) covariant.
Our aim is now to add a matter Lagrangian to (5.2) such that the total action
is invariant both under local U (1) and local supersymmetry. It is well known
that the matter sectors in (extended) supergravities are described by non-linear
o-models [45]; since we are here not interested in discussing the most gen-
eral model of this type, but rather in the simplest non-trivial example, we will
immediately specialize to the bosonic SL(2,R)/SO(2) coset space o-model as
our starting point. The Lagrangian can be alternatively derived by dimensional
reduction of simple supergravity in four dimensions [44,6] after a duality re-
definition of the Kaluza-Klein vector (see, e.g., refs. [39,40] for details). The
SO(2) = U(1) stability subgroup of the coset space can be identified as the
helicity group of the four-dimensional theory; this also explains the charge as-
signments of various fields below. The group SL(2,R) has three generators Z!,
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Z? and Y, where Y generates the maximal compact subgroup SO(2). Their
algebra reads

[Y,Z'] = =27%, (Yv.Z%*1=2Z', [Z'.Z%] =2V, (5.7)
and they are normalized such that
Tr(YY) = =2, Tr(Z¥z" =26, Tr(YZ¥) =0. (5.8)

The bosonic field is an element V of SL(2,R). Since this matrix represents
three degrees of freedom, of which only two are physical, one scalar degree of
freedom must be eliminated. This is the main reason for requiring the action
to be invariant under /ocal/ U (1) transformations. The combined action of the
rigid SL(2,R) and the local U (1) transtormations on V is then given by

V(x) — g~ "W(x)h(x), geSL(2,R), h(x)e€SO(2). (5.9)

The U(1) covariant derivative on V contains the same gauge field as (5.4); it
reads

DYV=09,V-VYQ,. (5.10)
An action invariant under (5.9) is
Lboson = —3eg® Tr(V-'D,V V-'D,V). (5.11)

At this point, we have two possibilities for treating the gauge field Q,. Namely,
we can define Q, by
Oy = —%Tr(V“i)uV Y). (5.12)

In this way, the gauge field becomes a function of the scalar fields and thus a
“composite” field, whose variation under local supersymmetry is determined
from the variation of the scalar fields. The other possibility is to take Q, as an
independent field which is subsequently determined by its equation of motion,
in which case there will appear extra terms bilinear in the fermionic fields on the
right hand side of (5.12). This is the analog of the usual first order formulation of
gravity. If Q, is treated as an independent field, we can drop the terms with J. Q,
in the supersymmetry variations, but must at some point invoke the Q, field
equation (so-called 1.5 order formalism, see ref. [6]). As for the Lagrangian,
the two approaches differ only in the higher order fermionic terms.

To streamline the formulas, it 1s useful to introduce some further notation.
We define a complex matrix Z = (Z! + iZZ)/\/Z The commutators and nor-
malizations now read

Y,Z] =2iZ, [Y,Z*]=-2iZ*, [Z,Z*] =-2iY, (5.13)

Te(YY)=-2, Tr(ZZ*)=2, Tr(ZZ) = 0. (5.14)
As useful abbreviations we define
Py=3iTe(Vv-'DYV Z) = 1Tr(Vv-10,v 2), (5.15)

Ry=—3Tr(VI'IDVY) = —3Te(VI9VY) - Qy.  (5.16)
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which are the components of V~!'D,V in the directions of the three generators.
With (5.14) we have

VD,V = PZ" + P;Z + R,Y . (5.17)

Obviously, R, = 0 in second order formalism. In terms of these quantities the
scalar Lagrangian becomes

‘Cboson = _eglw (PuP; - %RyRu> . (518)

Although the term containing R, has a negative sign, leading to an action that
is unbounded from below, the physical spectrum and the Hamiltonian of the
theory are perfectly well behaved. This is a consequence of the fact that the
scalar degree of freedom associated with the Y generator is a gauge degree of
freedom and hence unphysical.

Acting on (5.17) with another derivative D, and antisymmetrizing in the
indices # and v, we obtain the integrability relations

D,P, = V,P, - 2iQ,P,, (5.19)
D,P,, = 2iR|,P,,, (5.20)
Qu =201, 00) = 4 PPy —2DR,, (5.21)

from which we conclude that P, has U (1) charge 2.
As the superpartner of V we introduce a complex fermion field y with the
usual Dirac Lagrangian, which we write in the form

Liermion = 3€ (Dux v % — X7 *Dux) » (5.22)
where the Lorentz and U (1) derivative is given by
Dy = 0 + 54, vax —1BQux » (5.23)

and the U (1) charge # will be adjusted in a moment.

Since no further terms containing the spin connection appear in the La-
grangian, we can now work out the field equation for A4,” that follows from
Egrav + Looson + Ltermion- We get

Diuen)® = W, 7"V — 1€ emencix - (5.24)

As is well known, this equation can be solved for the spin connection, i.e. 4,"
(second order formalism). Similarly, we can use the field equation to express
Q. in terms of the other fields; (5.12) is then replaced by

Qu=-3Tr(V'9VY) —ine gue P F W — ifX1uX - (5.25)

This shows that R, no longer vanishes in the presence of fermions, but is given
by a fermionic bilinear instead.

The variation of the boson J.V under supersymmetry should be linear in x,
and that of y linear in the derivative of the boson. The action is invariant under
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the transformations (5.3) and
V9V = yeZ +éxZx, (5.26)
Oy = yte P, (5.27)
if we add the usual Noether term
Looether = € (W, 7" PFx Py + Xy*v wuPy) . (5.28)

Demanding U (1) invariance of this term, we arrive at the relation f — a = 2.
Canceling the term proportional to Q,,, in (5.6) against a similar term obtained
by varying y in (5.28) by use of (5.27) requires the integrability relation (5.21).
In second order formalism, we can neglect the term containing R, (we can also
neglect it in 1.5 order formalism as long as we are not interested in higher order
fermionic terms). This completely fixes the charge assignments to a = —%
and 8 = %, in accord with our expectation that the physical fermion states
correspond to the helicity i% states of simple supergravity in four dimensions.

At this point, the Lagrangian
El[()a v, V!Xa A, Q] = ﬁgrav + [:boson + ‘Cfermion + ‘Cnoether
= G”Vp (%eya vpa + WﬂDI/l/IP) - egl“/ (PﬂPu* - %RHRI/)

+ 36 (Duxy*x = X7 Dux ) + € (Wuy*y*x Py + xv*y"wuP,) (5.29)
is invariant under the local supersymmetry variations (5.3), (5.26) and (5.27)
modulo higher order fermionic terms. To make the Lagrangian completely in-
variant, we must now add quartic terms in the fermions, whose precise form will,
however, depend on whether we use 1.5 or second order formalism. The latter
choice has the advantage that R, vanishes, and that the integrability relation
(5.21) assumes a simple form. However, with this choice, we are not allowed to

drop terms that contain the variation of @, under supersymmetry. Using (5.26),
the variations of (5.12) and (5.15) yield

0cQ, = 2ige Py—2i€x P, (5.30)

561);1 = Du (€x) ., (5.31)
and, of course, 6. R, = 0. The actual calculation of the cubic fermion terms is
a little tedious and not very illuminating. It turns out that we have to add the
following terms to the action:

L=L —ePxxwh+ 3e™P (T Wlip X + Wurp o XX )— 3eqx %x - (5.32)
The complete transformation laws read (y,, is the antisymmetrized product
y[u YV] )

deey” = €Yy, — W, %,

56!///1 = DuE + %iGRM + %J’uuﬁil’”x,
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VISV =jeZ +éxZ”,
dex = e (Pu—W,x). (5.33)

The term proportional to R, in the transformation law for y,, which vanishes
by (5.12), has been introduced to make the whole expression independent of
Qyu. So we have the same expressions for the transformation laws when Q,, is
treated as an independent field, i.e. in 1.5 order formalism. But there we get
other higher order corrections to £’. The total action is then given by

L=L —ePxpht+5er (%%wui}’px + VuVp Vo XX )

+ 5V W) WYY + Fexxxx . (5.34)
[Note that the first order formalism would also require the determination of the
supersymmetry variations of the fields Q, and 4,“. This can be done as follows.
Treating these fields as independent, the variation of £ under supersymmetry
will give something proportional to the equations of motion of Q, and 4,“. So
we can define variations J. Q, and J. A, such that the total variation of £ again
vanishes.] The next step would be to calculate the terms of fifth order in the
fermions and show that they vanish. We will not perform this final consistency
check as the theory is anyhow known to be consistent.

Note that the action £ is also invariant under local coordinate, local Lorentz
and local U (1) transformations

SqWu = —3iqu, V76,V =qY, 1 = 3igx, 0,04 = Oug. (5.35)

Furthermore, it is invariant under global SL(2,R) transformations V - g~!V.
In second order formalism for Q, the associated Noether current is given by

JH = —%V{ (Z*(P“ T, ") + C.C.) + i (( HPG Wy~ 3){;}”)()}. (5.36)
If Q, is treated as an independent field, the expression simplifies to

JH = —3DrVYT! 4 %V(W,,}"‘y”x A +)€y”y”t//,,Z)V*‘. (5.37)

5.2. CANONICAL TREATMENT

To the Lagrangian (5.34) we will now apply the usual Dirac method to obtain
the canonical momenta and the constraints. As in the last section we will denote
two-dimensional curved space indices by small letters /, j, k,.... Since we are
dealing with complex spinors, we consider ¥ and y as independent. Thus the
canonical configuration variables appearing in the action and their conjugated

momenta are . .
C’ua Au Yu ¥, 1% Qﬂ X X (5.38)
pt I T omt oW SHE 4 A ’
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Here again the index u “takes the values” ¢ and /. It is useful to introduce some
abbreviations:

n=eg, nn'=eg", h=g"—gllgl/g". (5.39)

They are functions of the dreibein only and build a two-dimensional scalar den-
sity, vector and tensor and they are essentially the lapse and shift functions
introduced in section 2, and the inverse of the two-dimensional metric, respec-
tively. We will also use the index “n” for the combination X, = X, + n'X;.

Let us now turn to the constraint algebra. As in the last section we get some
second class constraints which have to be solved by passing over from Poisson
to Dirac brackets. Calculating the momenta of the space components of the
dreibein, the spin connection, the fermions and the U (1) gauge field we get

pa' =0L/66" =0, 1} = 6C/64," = Lee,,  (5.40)
n' = 6L/6w; = Lely;, T = 0L/0y; = —eVy,, (5.41)
A=08L/0x = Ley'y, A =0L/o) = texy!, (5.42)
St =6L/60; =0. (5.43)

Note that 4 is not the Dirac conjugate spinor of A (to ensure that the combination
Xora+ Xala = —Ax + xAisreal, A must be the negative conjugate of ). The last
constraint S’ = 0 leads to another second class constraint £/6Q; ~ 0, which
1s, of course, just the spatial component of (5.25),
Ti=Ri—3ifyix + 5ie ™' gue"?"F o~ 0. (5.44)
The Dirac brackets are calculated in appendix B. The non-vanishing brackets
containing the spin connection are
{4°(x), ()} = 26516 P (x,y),
{A4%(x), 4,2 ()}, = 2nlee'ee;; iy 0 P(x,p),
{4:2(x), x )} = —n ey 6 D(x,y),
{45(x), 1)} = —n ey 10 Px,y), (5.45)

and those containing only fermions are

Xa(X), 250} = —n 7yl 6 P (xy),
{Via (), W30} = €005 P (x,p). (5.46)
All other brackets of the fields e,%, 4;°, x and y; vanish.
The situation for the boson V and its momentum W is slightly more compli-

cated because V is an element of SL(2,R), which is not a linear space, but the
subset of the vector space of all 2 x 2 matrices defined by detV = 1. So we may
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take V to be a general matrix and get additional constraints *” . How this is done
is also shown in appendix B. By defining a matrix derivative

(Ba_v)mn = 03nm = %Tr(AV) =4, (5.47)
we can compute the momentum of V (remember that P, = P, + n'P)):
W = 3L/6V
= — 3 (nPa—nTux + TGy ) 27V
— Y (aPr —nxwn 4+ €Uxyiw)ZV1 - IR, YV (5.48)

The Dirac brackets of V and W, also computed in appendix B, are most conve-

niently written in matrix form (with 4, B arbitrary 2 x 2 matrices). Up to spatial
J-functions they read

{(V, Tr(WA)}.

{Tr(WA), Tr(WB)}.

A-LTr(v14) v, (5.49)
1Tr(WA) Tr(V='B) = $ Tr(WB) Tr(V~14) .

il

After solving the second class constraints (5.40) to (5.44) we now compute
the remaining (first class) constraints. These are the derivatives of £ with respect
to the Lagrange multipliers Q;, y;, 4;% and ¢,%. We get

T=6L/6Q, = —Tr(WVY) — LieVy,y; + 3iexy'y. (5.50)
It is easy to see that 7[gq] = [ ¢T is the generator of the local U(1) transfor-
mations (5.35). The Dirac brackets are
{Tlql.V}. = VYq,
{Tlql.Wh = -YWq,
{Tlql.wi}. = —%iqy;,
{Tlal.x}- = 3iqx. (5.51)

One might expect that 7 has non-vanishing brackets with the spin connection
since it contains y and e;%, but a short calculation shows that

{exv'x, A" = 0. (5.52)

It is here that we meet again with the theory defined by the Lagrangian (5.32),
where Q, is not an independent field but given by eq. (5.12). Evaluating the
canonical formalism in that case would lead to the same constraint 7" not by
differentiating £ with respect to Q, but by observing that the component of
W in the direction of Y is not free but given by the fermion terms in (5.50).

#7 This method works equally for other non-exceptional groups, but is much more difficult to
implement for the exceptional groups. That is why in ref. {18] a different parametrization was
adopted.
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Since @, itself is a Lagrange multiplier and does not appear in any constraint
and because the spatial components Q; can be eliminated by the second class
constraint (5.44), we get the same algebra of first class constraints in both cases.
The Lorentz constraint is given by
L, = 6L/0A° = Le'V(Dieja — W,vay)) — Seead 1 (5.53)
and we define the generator of local Lorentz transformation as L[w®] = [ w?L,,
which acts on the fields as
{Ll@"],en}s = €pac?ei”,
{L[wa]aAib}* = 8iwb + 6bacwaAiC,
{L{w®], Wi} = —50%ayi,
{L[w*],x}s = —30%ax . (5.54)
Taking the derivative of £ with respect to ¥, we get the supersymmetry con-
straint
S =08L/0y, = —x TrWVZ*) + €7 (Diy; + 3iRiv;)
—eYe (7ax P; + 3van¥i 171 )s (5.55)
where we have used the constraint (5.44) to obtain the term proportional to R;.
The generator of local supersymmetry transformation is defined by S[e] =
J€S + Se and it is straightforward to verify that for any field ¢ we have
{S[e], ¢} = de¢ with the transformation defined by (5.33), but since some
of them contain time derivatives, they are only equal modulo the equations of
motion; e.g., we have for the matter fields
{Slel,VIe = €XVZ" + xeVZ,
{S[el, W} = —€x Z*W — geZW — ey~ D,
x (L@e —ew) VYVt 4 g vZVl = gy vz,
{Slel, P}. = (Di + 2iR;) €y,
{S[é],R,‘ + Q,‘}* = 21P,X_6 — 21P1*€X s
(Slelx}e = hiyie Pi—n~'y'e P, (5.56)

where R N

P=P-Vyx, P=TrWVZ)+cwyx. (5.57)
Finally we will compute the diffeomorphism and Hamiltonian constraints, i.e.,
we must evaluate H, = dL/de”. It takes a little further calculation to construct
the generator of diffeomorphisms and the WDW constraint from H,. A slightly
quicker method for the diffeomorphism generator is to require that its Dirac
bracket with any field should yield the corresponding Lie derivative on this
field, viz.,

(DICF), e . = 9;Cker® + [kogel. (5.58)
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With D[(K] = [{¥Dy, this leads to
Dy = —Tr(WoV) + 3€7(0;4;%ekq + Ax°0i€)4)
— 5 (A A — X O0kx ) + €9 (0 wi + WiOiw; ). (5.59)
As shown in appendix C this can be obtained from H, by
D = e°Ha + QT + A Lg + WS + Swi. (5.60)

Subtracting these other constraints from Dy replaces the normal derivatives by
the (super)covariant ones, i.e., we can define a U(1) and Lorentz covariant
diffeomorphism constraint

Dy — Ok T — ALy = —Tr(WDV) + Lex%e'/ Fijq
—se(Duxy'x — 17 Dix ) + €Y Dk + WDy ), (5.61)
which generates extra U (1) and Lorentz rotations with parameters —{*Qy and

—{kA4,° respectively, and which gives the correct result only weakly.
The Hamiltonian constraint, as defined in appendix C, is

H = ﬁP* }’lé’l’lU(PP 1[/]/( +X/IDJX)

+€€lj( taFlja+ (P __WIX)Xy V/J_(P* 22‘/11') 17—]-?’){)
— el ix, (5.62)

where P; and P are given by (5.57). As also seen in appendix C, the diffeomor-
phism and Hamiltonian constraints defined in this way are equivalent to the
“true” constraints H, if and only if the dreibein itself is not degenerate; oth-
erwise a solution of (5.59) and (5.62) will not in general be a solution of the
theory defined by the Lagrangian (5.34), which contains the inverse dreibein,
too. Evidently, all constraints are polynomial in terms of the canonical variables
that we have chosen.

Finally we have to express the conserved charge of the current (5.37) in terms
of the canonical variables, since this is expected to be an observable in the sense
of Dirac, i.e., it should weakly commute with all constraints. We have

Q= /dzxej’ = /dzwi. (5.63)

One can obtain this simple expression without using the current (5.37); consider
a space—time dependent SL(2, R) transformation with parameter g~! (x). Then
the current is given by

dS = /dzxdze Tr(J"0.87"). (5.64)
On the other hand, since only V transforms under SL(2,R), we have

oL oL
— 2 —1 oL, Z1ny
sS = /dz&.f: /d v dr Tr((ng v+ S0 w). (5.65)
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From this we infer *® that the time component of the current must be VW.

5.3. ALGEBRA OF CHARGES AND CONSTRAINTS

A final check for our calculation is to show that the constraints are indeed
first class, i.e., that their Dirac brackets vanish weakly. The U(1), Lorentz and
diffeomorphism generators form the usual subalgebra, which we just write down
for completeness:

{DICK,DICR} . = DI Lk - 19,8k,

{LIo*.D[F ]} = LIF0w],
{T1q1.DICF}. = T Foq],
{L[w*],L[0*]}. = L[e®wyw.]. (5.66)

Their brackets with § may be obtained by using that S is a spinor density with
U (1) charge —1, which yields

{DIC1,S[e]}. = S[-CFoke],

{L{0?],S[e]}. = S[300%c],

{T[q).S[e]}. = S[}ige]. (5.67)

To get the brackets with H one uses that H is a U (1) and Lorentz scalar density
of weight 2. So it commutes with L and 7 and we have

{(DICF1,HY. = CFoH + 200K H . (5.68)

Il

A more complicated computation shows that

{S[e],S[]}. = /dzx (€79 — &7 YHy + i(Ex 56 — X 2E)T

+ € (€6 — €,€) Zvax Le. (5.69)

This vanishes again weakly, but it is not the generator of any combination of
transformations defined above, as expected since we did not introduce auxiliary
fields to close the algebra of supersymmetry transformations. The crucial point
when passing over to the quantum theory is, of course, that all the “structure
functions” in (5.69) appear to the left of the constraints.

What remains now is to show that the charge (5.63) indeed commutes (at least
weakly) with all the constraints. By using the Dirac brackets of T[¢g] and L [w?]
given in (5.51) and (5.54) it is immediately clear the VW is U (1) and Lorentz
invariant, and thus {7 [¢],Q}. = {L[w?],Q}. = 0. Under supersymmetry

#8 Note that this is not immediately clear because one might have to integrate by parts some
time derivatives to proceed from (5.65) to (5.64). This would happen if £ changes under the
global symmetry by a time derivative, which is not the case here.
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VW changes by a total derivative, as can been seen from (5.56). So being an
integral over the spatial manifold Q commutes with S[e¢ ], and, of course, also
with the generator of diffeomorphisms D [Z*].

To obtain the bracket with H, we have seen already in appendix B that P; and
R; + Q; commute with the charge Q. Evaluating the bracket {Tr(WVZ),VW},
using (5.49) also gives zero, which leads to {13, Q}. = 0. Since V and W enter
into H only via P, P; and R; + Q,, we conclude that {H, @}. = 0. This estab-
lishes our claim that Q is indeed a “physical observable” in the sense of Dirac,
i.e., it commutes weakly #° with all the first class constraints. In the quantized
theory and in the absence of anomalies in the algebra of constraints and charges,
the corresponding operator maps physical states into physical states and can
therefore be used to generate new solutions of the WDW equation from old
ones.

We conclude this section (and our lectures) with some remarks concerning the
quantized theory, where many open questions remain. The first step here is to
find an operator representation of the algebra defined by (5.45), (5.46), (5.49).
Let us first have a look at the brackets of VV and W. Since all the constaints depend
on W only via the composite fields #19 TrOWVZ), Tr(WVZ*) and Tr(WVY),
it is sufficient to give an operator representation for them. The Dirac brackets
of these fields are given by (again we do not explicitly write out the dependence
of the é functions on the spatial coordinates)

(TrOWVA), THOWVB)}, = Tr(WV[B, A]),

WV, Tr(WVvAa)}. = VA. (5.70)
A suitable operator representation is therefore
ViV, Tr(WVA) — Tr(iVAJ/oV). (5.71)

These operators satisfy
[Tr(iVA46/0V), Tr(iVB3/6V)] = (1) Tr(iV[B,A4]5/6V),
WV, Tr(iVA46/0V)] = (—1)VA. (5.72)

It is equally straightforward to find an operator representation for the graviti-
nos, as they do not mix with any other fields:

W[Hvi’ l//i'_’_iﬁiké/57/k~ (573)
The commutator replacing (5.46) reads
[_lelkd/éwku’Wjﬂ] = (_i)(fjarzﬂ' (574)

#9 1In this case it commutes even strongly, which is a consequence of using first order formalism for
Qu. See ref. [18], where second order formalism is used and the corresponding commutators
only vanish modulo the constraints.

#10 Indeed we have W = § TrowvZ)Z*v=! + S Tr(WVZ*)ZV~! — L Tr(WVY) YV~ since
Tr(WYV) vanishes by a second class constraint.



H. Nicolai and H.-J. Matschull / Aspects of canonical gravity and supergravity 55

Observe that this representation is even simpler than the one used in section
4.2, because there is no need to give up manifest covariance as the fermions are
complex.

For the spin connection, the dreibein and the fermion field the situation be-
comes more complicated. Problems are mainly caused by the new contributions
on the right hand side of (5.45). So, for instance, we can no longer represent
A;% by a multiplication operator. To find suitable operators obeying (5.45), we
must therefore search for combinations of A4;% and y that split into two pairs of
canonically conjugate fields. A possible ansatz is to take the complex connection

A = A ey, (5.75)
whose components commute with each other,
b —a 4—b
{Al+a’AJ+ }* — {Al a"4j }* = 0, (576)
and which obey
{A[-'—a’x}* = {Ai_a’i}* =0. (5.77)

Unfortunately, the brackets of 4% with y and vice versa do not vanish, nor
does 44 commute with Aj_b. Nevertheless it is worth observing that, by using
the new connection, the supersymmetry constraint simplifies to

S=-xTr(WVZ*) + €D}y, — ey P}, (5.78)

where N
Dy = (0 + 3494 + 31(Qi + R))w, (5.79)
is the covariant derivative with the spin connection replaced by A4 %. This ex-
plicit realization of (one half of) the canonical supersymmetry generator shows
that there are no ordering ambiguities!
We could now go ahead and try to solve one half of the quantum supersym-
metry constraint
Sx)¥ =0. (5.80)

However, there is still the other half of the supersymmetry constraint, for which
our operator representation does not work, so that even if we succeed in solving
this equation, we could not claim to have solved the full WDW equation. Per-
haps the resolution of this problem is the same as in (super)string theory: there,
one imposes only half of the Virasoro constraints (corresponding to the Vira-
soro generators L,, with m1 > 0) on the physical states, whereas the hermitean
conjugate operators (for which m < 0) need not annihilate them.

Appendix A

In this appendix, we present a quick proof that the crucial Poisson bracket
(3.4) indeed vanishes. This proof is also given in Ashtekar’s book [2] for a
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different choice of canonical variables. First we calculate the Poisson bracket
(3.5) using
{Pma-Pnp} = {€maD,enpp} =0,
{pmaa enbp} = €nwpPma — €mpC€nal »

{e L ewpt = =3¢ len. (A1)
We get
{ﬁmaaﬁnb} = (1+ 2B) (pnb(’ma _pma()nb) . (A2)
So this will only vanish for § = — % Next we define a functional
| 1
;= —g/dx €€4pc820pe = ~7 /dx €™ e Onlre (A.3)

and calculate the Poisson bracket of this functional with p,,:

{mea G} = %6’ (abcemdgabd s
{pemc’ G} = %(’ 6abdemcgabd
= {ﬁmcv G} = % (eabcemd - %eabdemc)gabd . (A4)

We have to show that this is equal to

1 1
—3€abeWmab = —3€abc€md (‘Qdab + -dea - -Qabd) . (AS)

By taking the difference of the last two equations and renaming some indices
we find

{ﬁmu G} + %gabcwmab = % (— €bcd€ma + €acd€mb — €Cabd€mec + ‘Cabcemd) Qabd~
(A.6)
The term inside the parentheses is totally skew symmetric in the four three-
dimensional indices a, b, ¢ and d. So we end up with

{ﬁmc: G} = _%szcwmab . (A7)

Appendix B

In this appendix, we calculate the Dirac brackets of N = 2 supergravity in
three dimensions. The second class constraints are given by egs. (5.40) to (5.44).
We include two further constraints on the matrix V and its conjugate momentum
W so that we can treat them as general 2 x 2-matrices, i.e., we can define the
momentum as

Woin = 0L/ Vm » (B.1)
which is just (5.48) in matrix notation. The Poisson bracket of V and W is
{Vins Wpg} = OmgOpn = {Tr(VA), Tr(WB)} = Tr(4B),
{detV, Tr(WB)} = Tr(V 'B)detV,(B.2)
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for some matrices 4 and B. Here as in the following we will not write down the
space dependence of the fields and all the brackets are to be multiplied by the
spatial d-function. The additional constraints ensure that V € SL(2,R) and that
V is tangent to SL(2,R). The full set of second class constraints now read
PL; = pai ~ O 3
Zl=1,' - fetej,~0,
A=2-Leyy~0,
A= -4+ 307 =0,
I'=-a'"+ fely; =0,
I =7+ 3¢y, =0,
Si~0,
Ty = R — 3ixvix + 3¢ '€ "W ,Wo =0,
V =detV-1=0,
W =Tr(Wy) = 0. (B.3)
The Dirac brackets [8] are defined by
{4,B}. = {4,B} - > {4, K}C(K,L){L,B}, (B.4)
KL
where K, L, M, ... stand for the above constraints and the coefficients C (X, L)
are (at least weakly) given by

> C(K,LY{L,M} = §(K, M), (B.5)
L

e, C(.,.) is the inverse matrix of {.,.}. By 6 (K, M) we mean 1 if K and M
are the same constraints and 0 otherwise, e.g., 6 (Z}, Z}) = 25} (observe the
position of indices).

By writing out eq. (B.5) for fixed M and using part of the Poisson algebra of
the constraints we get the following formulas, which can be used to compute all
components of C(.,.):

C(K,P}) = —2€;n%3 (K, Z}),

C(K’ 71) = _J(KaSi),

CK, W) = —%5(1(, Vy,

C(K,A0) = —n~'yp,(6(K, Ag) — C(K, P)){P}, Ag} — C(K, T){T;, 4g}),

CK,T") = ¢;;(8(K,T') = C(K, T){T;, T'}).,
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C(K,TH
C(K,Z})

€ (0(K, Iy — C(K, T )T, T7}),

~26;n° (6 (K, P}) — C(K, A5){Aa, P{}

— C(K, ) {4, P}} = C(K, Ti){Tx, P1}).,

C(K,S) = 6(K,Ti) — C(K, W){W, T;} — C(K, Ay ){Aa, T}

— C(K, A){ Ao, Ti} = C(K, LF){IK, Ti}

— C(KTTE. T} - C(k, PH{PL T} (B.6)

(¢34

Note that C(.,.) is antisymmetric only if both entries are bosonic, otherwise it
is symmetric. We can use the constraints (B.3) to express any quantity in terms
of 4%, e?, x, X, Wi, ¥;, V and W, so we have to evaluate the Dirac brackets of
these field only. As an example we calculate the Dirac bracket of 4;¢ with the
other fields:
{4,/ = {44, Z5)C(ZE, PP, e’}

= C(ZLP]) = 2em. (B.7)

The Dirac bracket of two spin connections does not vanish but gives
(45,4, = €zl z))

260 (C(Z4 Aa) Aus PEY + C (24, A0){ A0, PEY)

ta ,th

= 2n"lee"ee;;yx . (B.8)

Because this contains the fermion, there must be a non-vanishing bracket of 4,°
with y to ensure that the brackets obey the Jacobi identity,

(A% ta}s = ~{ASZ)C(Z], Ap) g, 1o} = —C(ZAy)
= —n’le“bceib(y’ycx)a. (B.9)

The brackets of 4;° with y;, V or W vanish since the components C (Z¢,K)
vanish for K = I'/, V, W or T}, so altogether we get (5.45). In the same way
one can see that y has non-vanishing brackets only with ¥ and 4;° and y; only
with ¥, giving (5.46). What remains are the brackets of V and W. Since the
only constraint that does not commute with V is W, we have {V,V}, = 0 and

{mewpq}* = {mewpq} - {an, W}C(I/V, V){V’ qu}

= OmgOpn — TVmnVyg > (B.10)
{Wins Wogte = = { W, VIC(V, W{W, Wy}
= Wom, WIC (W, VIV, Wpy}

= WmnVog' = $WoaVimn - (B.11)

Written in matrix notation we get (5.49). From these basic brackets one can
compute the brackets of the composite fields P;, P* and R; + Q; with W, which
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one needs to obtain the algebra of the constraints. A straightforward calculation
shows that

<

(Tr(V10,Y 4) (x),W(y)}. = —v—‘<y)a‘i,.

for any traceless matrix A. This leads to the crucial result that P, and R, + Q;
commute with the Noether charge of the global SL(2,R) group (5.63), since the
right hand side of (B.12) multiplied by V() gives a total derivative in y.

Assigning special values to 4 we get

{(Pi(x), W)} = —I(PY + (Ri + Q) Z)WV 6P (x,y)

+3ZV 1 (»)0i6 P (x,y),
W(PZ*-PZ)V 6P (x,p)
- 3YVl ()i (x,y), (B.13)

(VAV=16@(x,y))  (B.12)

{Ri + Qi(x),W(y)}-«

where d; always acts on the first argument of the d-function.

Appendix C

Here we will compute the Hamiltonian and diffeomorphism constraints for
the N = 2 supergravity in section 5. First we define some abbreviations, some
of them are defined already in section 5:

Pll = 1,)11 - —(/7#% >
P =TrWVZ) + eijW,-y,-x = —nﬁn,

R =-Tr(WVY) = —nR,,
G* = —Jie e Py, + 3izviy. (C.1)

A straightforward calculation now shows that the total Lagrangian (5.34) is
L =eg"(—PP; + (R~ G (R, - G)))

+ fuyp(ieuapra + _(/7,1511‘///) + (Pu - %Vﬂx))ﬁ’p% - (P/: - %ZWM)%YPX>

+ 3e(Dudv*x — Xv*Dux — 311 71 )5 (C.2)
where the derivative 5,1 is the equal to D, but the gauge field Q, replaced by
Q. + Ry, which is equal to —% Tr( V“é)ﬂv Y); thus only the first line in (C.2)
depends on Q, and the second order Lagrangian [with Q, defined by (5.12)]
is simply given by dropping the R, — G, terms in (C.2).

In this notation the second class constraint 7; (eq. 5.44) just becomes 7; =
R; — G;. To differentiate the Lagrangian with respect to ¢, we use

5 - N
—&—a(eg‘“’)XﬂYl, = e, (ehV X;Y; — nX,Y,) — nejsh (X, Yi + X;Y,) (C.3)
4
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and we must remember that G, depends on the dreibein:

0
ded

This yields

Gy = 04e4"Gy — e Gy + e,aG' + 1() Ygui€apc€ e 1y<x . (C.4)

My = 0L/5e°

—ea’<€hi1f’i131* —n (PP~ %ﬁk) - %nG,,G,,)

—hl.jeja(ﬁiﬁ* + ﬁﬁl* + R;(nR, — nGn))

+ e”(iFija + (P =3V 0) Xvaw; — (PF = 30w Wi va )
+ ee[ateb]i(Dth X = xy”D,x) Jeel ax 1x s (C.5)

where we dropped terms proportional to R; — G;. This is the N = 2 analog to
(4.15) for pure supergravity without matter fields. The generators of diffeomor-
phisms are formed in a similar way here, i.c., we have to compute

Dy = e"Ma + Ok T + A Lo + WS + Sy . (C.6)

The calculation simplifies if one rewrites the other constraints in terms of the
fields introduced above, which leads to T = n(G, — R,) and

S=—xP*+ €Dy — ey Pr 4 Ye (xxviv; — vix Xvi)- (C.7)
The result 1s
Tr(WOkV) — el (0;A4;%q + Ak%0i€ja)
1€ (A A =17 Ot )= € O v + Wiy ). (C.8)
This coincides with (5.59), which was constructed such that D[{¥] = fC"D,\
provides the Lie derivative of any field by taking the Dirac bracket {D[{¥], ¢} .
= L.

The most natural definition for the Hamiltonian constraint would now be the
time component of H,, i.e. ¢,H,, but unfortunately this contains the Lagrange
multiplier ¢, and, even worse, it is not polynomial in the canonical variables.
But we are free to take any linear combination of the H,’s that is independent

of D, to be the Hamiltonian constraint. It turns out that we get a polynomial
function by taking

H = ee'Hy + §(nRy + nGy)T

PP* — neh' (P Py — Dixyjx + xviDjx )

+ ee’f( e"“Fija + (Pi= 3W) xv'v;— (P7 = 3xw) 1/7_]'}’Ix>
—3eyxxx - (C.9)
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The only terms that are not obviously polynomial are ee’ = —1e4ccie e,
and enh = e'*e/l g, Note that in second order formalism for Q, we get the
same expression for the Hamiltonian constraint without adding the term pro-
portional to 7. As in the four-dimensional theory (eq. 3.14) the polynomialized
Hamiltonian constraint is a density of weight 2. The overall multiplication by
the dreibein in (C.6) and (C.9) leads to new solutions with degenerate metric,
which are not included in the theory defined by the Lagrangian (C.2), because
only for a non-degenerate metric do we have H = D, = 0= H, = 0.
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