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1. Introduction andmotivation

The presentlecturesreview somerecentdevelopmentsin canonicalclassical
andquantumgravity andsupergravityat an introductorylevel,with specialem-
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phasison issuesrelatedto Ashtekar’svariables.The discoveryof thesevariables
is widely regardedasoneof thesignificantadvancesof thelast fewyearsandhas
greatly stimulatedrecentresearchin canonicalgravity. Sincetherearealready
severalexcellent introductory texts available (see,e.g., ref. [1] and the refer-
enceslisted therefor a review of the generaltheory within the more familiar
metric formalism and ref. [2] for a discussionof the new variables),special

emphasiswill here be placed on sometopics that havenot receivedso much
attentionin the existingliterature.

Thedifficulties thatoneis confrontedwith in searchingfor a consistentquan-
tum theory of gravity appearin severalguises.First and foremost, thereare
enormousconceptualproblemsin understanding“what reallyhappens”as one
approachesthe Planckscalewherethe conventionalnotion of space—timeas a
differentiablemanifold mustnecessarilybreakdown.Secondly,therearesevere
technicalproblems,mostnotablythe factthat gravity,whenviewedasa conven-
tional quantumfield theory, is non-renormalizableandthusin needof modifi-
cationat shortdistances.Presentattemptsto cometo gripswith theseproblems
centeraroundthree different approaches.Among these,the most “physical”
proceedsby gedankenexperiments(aswell as a certain amount of “gedanken
theory”) to probephysicsat the Planckscale.For instance,onestudieshigh (i.e.
Planckian)energy scatteringof elementaryparticlesand strings (see,e.g., ref.

[31),or tries to unlock the secretof quantum gravity through a betterunder-
standingof black hole physics [4,5 1. The advantageof this approachis that it
relieson physical intuition ratherthan formal mathematics;however,it leaves

asidequestionsof mathematicalconsistency.The approachmostpopularwith
particlephysicistsconcentrateson the perturbativestructureof the theory.Here
onetries to cure the short distancesingularitiesof quantumgravity by adding
suitablematter to cancel the infinities andtherebyto arrive at a mathemati-
cally consistenttheory. This approachhas so far led to supergravity [6] and
superstrings[7], the first theorywhereall divergencesareallegedlyabsent.Un-
fortunately, little hasbeenlearnt aboutthe conceptualdifficulties of quantum
gravity until now by following this route, but one hopesthat the undoubtedly
beautifulmathematicalstructuresof thesetheoriesmight ultimatelyleadto some
betterunderstandingof theconceptualissuesas well. If successful,this approach
could possiblyexplain the spectrumof elementaryparticlesfrom thepostulated
absenceof divergences.

Finally, onecanapplycanonicalquantizationmethodsto gravity [8—101.This
is, in a sense,the mostconservativeapproachsince,at leastat the initial stage,
only a good knowledgeof textbookmethodsis requiredbesidesknowledgeof
Einstein’stheory.Thisapproachappearsto bewell suitedfor theinvestigationof
theconceptualproblemsofquantumgravity,andhasalso led to someinteresting
formal developments.On the otherhand,it has little to sayaboutthe origin of
elementaryparticles(in particularfermions);theirexplanationis usuallyviewed
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Fig. 1. Interpretingthe wavefunction of the Universe [11].

as a secondaryproblemin thecanonicalframeworkandleft to otherapproaches
to solve.

In theselectures,we will focuson the canonicalapproachwith a specialeye
towardsaparticle physicsaudience.The emphasisherewill be on the technical
ratherthan on conceptualissues.So we will havenothingto sayaboutthe pos-
sible interpretationof the wavefunction of the universe;see,however,fig. 1 for
somesuggestions.We will thussimply applytheusualquantizationprescriptions
(supplementedby Dirac’s theory of constrainedHamiltoniansystems [81) to
Einstein’s theory.This procedureleadsto a Schrödingertype equationwhich is
commonly referredto as the “Wheeler—DeWittequation” [12, 13]. Of course,
this equationis far more complicatedthan an ordinary Schrödingerequation,
and attemptsto find genuineand physically meaningful solutions (so-called
“wave functionsof theuniverse”) havelargelyfailed. Thedifficulties arepartic-

ularly acutein the familiar metric formalism,where one endsup with a highly
non-linearfunctional differential equation,which is practically impossibleto
solve as it stands.In orderto break the deadlock,onecan try to mutilateit by
retainingonly a finite numberof degreesof freedom(so-called“mini superspace

approximation”),but onecannothopeto get morethana caricatureof the real
world in this way.

An importantbreakthroughoccurredin 1986with thediscoveryof newphase

spacevariablesin termsof which the canonicalconstraintsbecomepolynomial
[14,1 51 (it is a measureof the complexityof Einstein’stheorythat it took more
than seventyyears for this discovery!).With the new variables,it becomespos-
sible to constructnon-trivial (though formal) solutions to all the constraints
[16,1 7]. The fact that the interpretationof thesesolutionsremainsobscurecan
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beviewedasan indicationof thehighly unfamiliarfeaturesof quantumgravity.
Of course,one hasno right to expectthat a merechangeof variableswill be suf-
ficient to solveall the problemsof quantumgravity, but the formalismcontains

sufficiently many new andpromisingelementsto justify someoptimism. This
is especiallytrue when onecombinesit with otherconceptsand ideassuch as
supergravityandsuperstrings.We believethat further progresswill dependon
giving up isolationistviewpoints, andthat interestingdevelopmentsin the near

futuremaywell occuron theinterfacebetweencanonicalgravityandsuperstring
theory.

Among thenew topicsto betreatedherearethree-dimensionalsupergravities,
where solutionsof the quantumconstraintsof the N = 1 theoryare explicitly

derivedfor thefirst time#l . Furthermore,we will discuss“hidden symmetries”
in the canonicalframework andtheir relevancefor the constructionof observ-
ablesin the senseof Dirac. N = 2 supergravitywill be treated in quite some
detailhereasit is thesimplestmattercoupledtheoryexhibitingsuchsymmetries
andthusprovidesa simplerexampleof the canonicaltreatmentof extendedsu-
pergravity than the N = 16 theory discussedin ref. [18]. Although our results
are far from complete, we also briefly considerthe quantizationof the N = 2
theory. We hopethat our argumentswill convincethe readerthat, despitethe
numerousopen problems,dimensionallyreducedsupergravitiesare especially
interestingtheoreticallaboratoriesto enlargethe scopeof the formalism to mat-
tercoupledtheoriesandperhapsto generalizeit to higherdimensions,following
suggestionsof ref. [18].

We now summarizesomenotationsand conventionsusedin theselectures.

Wewill usecapital lettersM, N, ... andA, B, ... to label curved andflat indices,
respectively,in d dimensions.Similarly, indicesm,n, ... anda, b, ... will be em-
ployed to label tensorsin d — 1 (spatial)dimensions.We will use the special
indices t and 0 for the curved and flat time component,so Al (A) takesthe
“values” mandt (a and0). A dot or 0, will denotetime derivatives.Themetric

hassignature(— + .•. +) in d dimensions;y matricesobey {~A ~~B} =

2. Basicsof canonicalgravity

The canonicaltreatmentof gaugetheoriesrelies on the methodsdeveloped
by Dirac in his studyof constrainedsystems[8] (seealso refs. [19,20]). Local
invariancesin gaugetheoriesimply constraints.The mostelementaryexample
is is ordinaryelectrodynamics,wherethe absenceof 3,A, from the Lagrangian
implies that the associatedcanonicalmomentumvanishes.Consistencythen

~‘ This part of thelecturesis basedon unpublishedjoint work with I. McArthur. We are grateful
to him for the permissionto include theseresultshere.
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requiresthat this constraint is preservedby the time evolution,which in turn

leadsto Gauss’law OmEm = 0. More generally,supposethat ~ is a field without
time derivative in the Lagrangian£. Then we find a primary constraintH =

= 0, andwe musthave

H= (/ôç~){ç~,H}=0, (2.1)

which requires

5L/óç~ 0, (2.2)

where the left handside of (2.2) is to be expressedin termsof the canonical
variables(this is called a secondaryconstraint).The above equationalready
makesuseof standardnotation: “~ 0” means“weakly zero”, i.e.,the constraints
must be imposedonly after all canonicalbracketshavebeen calculated [8].
Constraintssuchas (2.1) or (2.2) single out a hypersurfacein the phasespace
of the theory. In the quantumtheory, the constraintmust be imposedas an
operatorconstrainton theHilbert space:the statesselectedin thisway arecalled
“physical states”.We will not alwaysdistinguishbetweenclassicalandquantum
theory. So, par abusde langage,the word “commutator”will refer to both the
classical (Poissonor Dirac) bracketandthe quantumcommutator.

In this section,we will reviewthe applicationof Dirac’s formalism to grav-
ity. The basicstepshereare,of course,well known [9,101,butwe nonetheless
presentsomedetails,notonly to set up thenotation,butalsoto makethe presen-

tation reasonablyself-contained.Onestartsby slicing (“foliating”) space—time
into a sequenceof space-likehypersurfaces;this stepviolates the manifestin-
varianceunderfour-dimensionalgeneralcoordinatetransformations(ordiffeo-
morphismsin moremathematicalparlance).Theconfigurationspacevariables
of gravity aretheten componentsof themetric tensorg,~(x) [.~d(d + 1) com-
ponentsin d dimensions],wherex is a local coordinateon the given “initial”
space-likehypersurface.As we will see in a moment,not all of thesevariables
aredynamical,but four of themareLagrangemultipliers, leadingto constraints.
TheseLagrangemultipliers, called “lapse” and “shift” functions (seebelow),
reflect the invarianceof the theoryunderdiffeomorphismsin space—timeand
appearin the equationsdeterminingthe time evolutionof the initial space-like
geometry(andthereforealso determinewhich points in space—timearespace-
like or time-like with respectto eachother).

Below, we will use the vierbein EMA insteadof the metric; thereis thenan
extra local symmetry,namelylocal Lorentz (= SO (1,3)) rotations actingon
the flat index A. It is, of course,well known that gravity canbe thoughtof as a
gaugetheorywhich is invariantunderlocal translations(i.e.diffeomorphisms),
which canbe generatedby space-likeor time-like vectorfields. Consequently,
we havefour canonicalconstraints,threeof which are associatedwith diffeo-
morphismsactingon the space-likehypersurface.It is the presenceof the con-
straint associatedwith the invarianceunder time-like diffeomorphismswhich
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is responsiblefor the differencebetweenordinarygaugetheoriesandgravity:
it containsdynamicswhereasthe otherconstraintsareonly “kinematical” (so
canonicalYang—Mills theorieshaveonly “kinematical” constraints).After quan-
tization,thecorrespondingconstraintbecomesthe celebratedWheeler—DeWitt
(WDW) equation[12,13]. We will referto this constraintas the “Hamiltonian

constraint”,or simply the “WDW operator”, regardlessof whetherwe aredeal-
ing with the classicalor quantumtheory. For the remainderof this sectionwe
will work in an arbitrarynumber(= d) of dimensionsandonly returnto four
dimensionsin the next section.

To proceed,we parametrizethe vielbein as follows:

A (N Na\ M (N’ ~~N_lNm
EM = I ‘~‘ EA = rn (2.3)

\U emaj Ca

where partial use hasbeenmadeof the local Lorentz symmetry to eliminate
someoff-diagonal components.Note that we can write flat space-likeindices
alwaysas lower indicessincetheyarecontractedby ~ab~There is still a residual
symmetryunderlocal SO(d — 1) rotationsof the dreibein erna. Computingthe
metric from thisparametrization,we find

(NaNaN
2 N~

~MN = , (2.4)
\ IVm

which is the standardparametrizationintroducedin ref. [9]; the functionsN

and N~ = earnNa are referredto as lapseandshift functions [9,10]. In the
following, we will work with the spinconnectionW5.~BC,which is given by

WMBC = EBNVMECN = ~(QABCQBCA +QCAB) EMA, (2.5)

whereVM is covariantwith respectto gMN, 50

17 ‘~ 77 r’P 17

VMVN=UMVN—I MN~P

for space—timevectors V with the Christoffel connectionF, andQABC are the
so-calledcoefficientsof anholonomy,

QABC = 2E[AMEB]NOMENC, (2.7)

wherethebracketsindicateantisymmetrizationwith strengthone.The Riemann
tensor in our conventionsis given by

RMNAB = DM0)NAB — 0N~MAB + WMACWNCB WNACWMCB, (2.8)

from which the Ricci tensorandthe curvaturescalarcan becomputedby con-
traction with the inversevielbein. For the canonicalanalysisas well as the di-
mensionalreductionof Einstein’stheoryto lowerdimensionsit is convenientto
expressthe Einsteinactiondirectly in termsof the coefficientsof anholonomy.
The Einsteinaction is

1 r’ o 1 u~r MA r ~, ~, 1 L’ N
L. = L~IX = L~L~ V N, V Al I 2-~A
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Making useofthecovariantconstancyof thevielbein (i.e.,VMENA + WMABENB

= 0), wecan rewrite this action in the form

~E V[ME VN]EA = ~E (WAABWCCB— WABCWC) (2.10)

up to a totalderivative. Inserting (2.5) we get

£ = —~E(QABCQABC— 2QABCQBCA— 4QABBQ.~c) . (2.11)

Forthe canonicalanalysiswe mustnow write out the coefficientsof anholon-

omy in termsof the parametrizationintroducedaboveto find out which of its
componentscontaintime derivatives.Oneverifies that

‘~i rn n~
~‘abc = LC[a eb] Umenc

~~abO = 0,

~ObO = e6N0~A. (2.12)

Manifestly, theseexpressionscontainno time derivatives.On the otherhand,

~Obc = N~’ (eb~(Ot — NmDm)~ — eb’~’eflC0~N°) (2.13)

doescontain time derivatives,but only on the dreibein. Thus, the lapse and
shift functionshavevanishingmomentaandwill act as Lagrangemultipliers.
Substituting(2.12) into (2.11),we get

£ = ~Ne(4Qo(bc)Qo(hC)—

4~Odd~Oee— 8Qaü~Qacc

— ~2ahc�2abc + 2�2abc�2bca+ 4Qabh12acc), (2.14)

where (ab) denotessymmetrizationin theindicesa, b with strengthone;after a
partial integrationin d — 1 dimensions,the last threeterms in parenthesesadd
up to the curvaturescalarR(d I) of thespace-likehypersurfaceplus a termwhere
the derivativeactson N, but this is canceledby theterm involving Qa~~Qacc.So
we get

£ = ~Ne (Qo(bc)Qo(bC) ~Odd~Oee + R~1)) . (2.15)

The canonicalmomentaassociatedwith the dreibeinare

Patm = óL/öerna = ~eebm (�20(ab) — (5ah~2Occ) . (2.16)

Note the position of indices here: to move indices up or down, or to convert
flat into curved indicesand vice versa,one contractswith the dreibein. This
is important when computingcanonicalbracketssince momentumvariables
with indicesin a position different from the one indicatedin (2.16) no longer
commutein general.Observethatp transformsas a tensordensitywith respect
to reparametrizationsof the space-likehypersurface.Since (2.16) containsonly
the symmetrizedpart of ~Oab, we immediatelyobtainthe primaryconstraint

Lab = Cm[aPh]m 0, (2.17)
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which will turn out to be the canonicalgeneratorof spatial Lorentz transforma-
tions.Theremainingmomentavanish:

Po’ = = 0, Pa’ = ~L/~Na = 0. (2.18)

As explainedabove,the vanishingof thesemomentumcomponentsimplies fur-
therconstraints,which will be presentedin a moment.We caninvert the above
relations(2.16) to expressthecomponentsof.Q containingtime derivativesby
the canonicalmomenta.In this way we obtain (rememberthata, b arespatial
indices,50 óaa = d 1)

~
2O(ab) = ~ (Pab + 2~d~~) (2.19)

wherep CpnaPam.This is the extrinsiccurvaturekab of the space-likehyper-

surface,which is definedas the projection of the four-dimensionalcovariant
derivativeof the normal vectoronto the hypersurface:

— M N

Kab = Ea Eb V~víE,\’O. (

A shortcalculation (replacingthe ordinaryderivativein (2.7) by V) showsthat
this is indeedequal to QO(ah).Taking the trace,we obtain

QOCC= 2~dC~ (2.21)

The canonicalHamiltonian is thus

= Patmerna — £. (2.22)

Useof the aboverelationsandsomerearrangementleadsto

71 = N71

0 + NaRa, (2.23)

where

~ (PahPah + 2— d p2) — ~eR~U. (2.24)

Furthermore,

71~a—V,nPa
tm, (2.25)

whereV~is covariantwith respectto space-likediffeomorphisms,sothedreibein
is constantunderVm and

ThnPah = eDm(e~pab)+ (-0rnacPcb + 0)rnbcPac (2.26)

(there is anextracontributioninvolving the derivativeof the dreibeindetermi-
nantbecausePab is adensity).Accordingto thegeneraltheoryandwhathasbeen
said above,~-lüand7~1amustvanish weakly in orderto preservePo’ = Pa’ = 0.
These,then,are the canonicalconstraints,and ‘l-l~is the WDW operator.Con-
sequently,the Hamiltonian vanishesweakly, as is the casein any theory in-
variant under reparametrizationsof the time coordinate(another exampleis
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the point particle). For completeness,we mentionthat the Hamiltonianabove
is not unique sincewe may adda term proportionalto the Lorentz constraint

(2.17) to it with a suitableLagrangemultiplier.
The basic Poisson brackets are given by

{Crna(X),Pb”(y)} = ôab~5~,ô~
2~(X,Y). (2.27)

Other commutatorsinvolving the inversedreibein, or the momentawith the
indicesin otherpositionsfollow in a straightforwardfashion.For instance,

{ema(x),pnb(y)} = eflaemb~21(x,y). (2.28)

Thisconcludesour briefdiscussionof canonicalgravity in the metric formal-
ism (for a much morethorough treatment,the readeris referredto ref. [1]).

To quantizethe theory, it would now seemthat all that remainsto be done is
to replacethe Poissonbrackets (2.27) by quantumcommutators,or equiva-
lently, the canonicalmomentumPatm(x) by the functionaldifferential operator

—ihô/öetma(x). However, it is immediately clear that the equationsobtained
in this way arehighly non-linear,andthat therewill be severeoperatororder-

ing ambiguities.While it is still comparativelyeasyto solve the spatial diffeo-
morphismconstraintsby building wave functionalsout of invariant integrals
of spatialcurvaturesover the space-likehypersurface,attemptsat constructing
generalsolutionsof the WDW equationappearcompletelyhopeless.This leaves
us with the unappetizingpossibility of truncatingthe WDW equationby only
retaininga finite numberof degreesof freedom(suchas,e.g., the radiusof the
universe;this is the so-called“mini-superspace”approximation)or of resorting
to unilluminating weakor strongcoupling limits whereeitherthe “kinetic term”
involving p2 or the “potential” eR’~ is discarded.

Beforeturningto thenewformulation,onefurtherpoint shouldbementioned.
Evenwithin theclassicalframework, andindependentlyof thephasespacevari-

ablesone chooses,thereremainsa major unsolvedproblemin canonicalgrav-
ity, namely the constructionof non-trivial observablesin the senseof Dirac.
By such an observablewe generallymeanany functional of the phasespace
variablesthat weakly commuteswith all the constraintsand doesnot vanish

on the constrainthypersurface(otherwise,the constraintsthemselveswould be
observables).In otherwords,we would like to explicitly constructa phasespace

functional O(Crna,Pam) for which

{7-lo(x),O}~0, {7-l~(x),O}~0. (2.29)

Unfortunately, for pure gravity, no such functional is known. The main cul-
prit for this sorry stateof affairs is againthe Hamiltonian constraint; since it
containsdynamics,the constructionof observableswould amountto the iden-
tification of “constantsof motion” for Einstein’s equations.The lack of such
observablesseverelyaffectsthe quantumtheory,wherethenotion of observable
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is indispensable for the physical interpretationof the formalism. As we will see
later, the situationis not quite asbadfor puregravity andsupergravityin three
dimensions,which aretopological theories,andmattercoupledtheoriesof (su-
per)gravity in higher dimensionswhich possess“hidden symmetries”. In both
casesit is possibleto constructobservablesobeying (2.29).

3. Ashtekar’svariables

The precedingdiscussionhas clearly led to an impasse,andat this pointone
might be inclined to believethat someradically new ideais neededto makefur-
therprogress(suchis the attitudeof adie-hardstring theorist).It wastherefore
quite a surprisewhen, in 1986, Ashtekardiscovereda newset of phasespace
variables [14] in terms of which not only the non-linear constraintsbecome

polynomial, but solutions to all the quantizedconstraintscould be found [17].
Thesesolutionsarevery different from the approximatesolutionsof the mini-
superspaceapproximation.It is plausiblethat their unfamiliarform andthefact
that they are difficult to interpret simply reflect genuinefeaturesof quantum
gravity, which we would anyhowexpect to be very unusual. In this chapter,
we will presenta (hopefully) pedestrianintroduction to Ashtekar’sformalism,
althoughour treatmentof the solutionswill be rathercursory (theseareexten-
sivelydiscussedin recentreviews [2]). An importantproperty (drawback?)of
theformalism is that, so far, it only works in space—timedimensionsd = 4 and
a’ = 3 (however,seeref. [18] for somespeculationsconcerninga’ > 4). We
will first discussthecased = 4, correspondingto the real (albeit empty) world.
The simpler d = 3 theorywill bedealtwith in the following section.

3.1. CONSTRUCTIONOF THE NEW VARIABLES

The basicidealeadingto the newvariablesis quite simple.Noticing that the
constraint generators (2.24) and (2.25) are schematicallyof the form “Ow +

w
2 +p2” and“(0 + w)p”, we will try to combinethem into anexpressionof the

form “0 (w +p) + (w +p)2” by introducingageneralizedconnectionfield of the
form A = “w + p” (the“Ashtekarconnection”),wherep is just the momentum
variableintroducedin (2.16).Let us thereforeproceedfrom the ansatz

Ama = ~~ahc~mbc + ~ (3.1)

where

Pma e~ (Pma + f3emaP) . (3.2)

Thecoefficientscv and/1 are to bedetermined.Defining anewcovariantderiva-
tive D~with respectto the Ashtekarconnection (3.1) andevaluatingit on a
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spatial Lorentz vector Va, we get

DmVa DmVa + EabcAmbJ~’c= 0mVa + 0)pnabVb +..., (3.3)

where the dots indicate terms depending on p. As for the terms containing w,

this agreeswith the usualLorentz covariantderivative (it is for this reasonthat
we haveinserteda factorof —~ in the abovedefinition). Note that the position

of the indiceson p is not the one of (2.16).Obviously, it is the presenceof the
epsilon tensorin this expressionthat forces us to put d = 4. The only other
possibility is d = 3 as we will see, but let usstick with d = 4 for the moment.
Since we would like Ama to be a proper canonical variable, we demand

{Ama(X),Anb(Y)} = 0. (3.4)

Obviously, the termsthat containp andtheonesthat do not mustvanishsepa-

rately. In appendixA we will showthat

{Pma,Pnb} = 0 (3.5)

leadsto/I = —~. We will also show that thereis a functional G[ema] suchthat

Ama = {~ma,G} + CtPma. (3.6)

Now it is easyto seethat the A’s commute:insertingthelastequationinto (3.4)

and making use of (3.5) and the fact that the first term in the commutator
dependsonly on Cma, we get

{Ama,Aflb} = cv{{pima,G},jIflb} — a{{j3~~6,G},~ma}

= a{{prna,pn~},G} = 0, (3.7)

where,in the laststep,the Jacobi identity hasbeeninvoked.
Sincetherequirement(3.4) doesnot fix the coefficientcv, let us now analyze

the constraintsin termsof the new variables (of course,we now assumethat
they canindeedbe reexpressedin this way!). We will first work out the field
strengthof Ashtekar’sconnectionin termsof the “old” variables.This yields

Fmna OmAna— DnAma + fabcAmbAnc

= — ~CabcRmnbc + (~ (Dmpna — Dnpma) + 1k

2 Ea~cPrn,~,pnc. (3.8)

Contractingoncewith the inversedreibein,we get

eatmFmna= cve~Vmpnm, (3.9)

wherethe Bianchi identity Rm[abc] = 0 andthe Lorentz constrainthavebeen
used.This is indeed proportional to the the diffeomorphism constraint.The
otherpossibility is

�abceamebnFmnc= —R~3~— cv2e2(PabPab— ~p2) , (3.10)

which reducesto the WDW constraint upon multiplication by e and for the
valuescs = ±2i.Obviously, there are two possiblechoicesfor cv, and hence two
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possiblechoicesfor the Ashtekarconnection,which we label A ~. Note that
A(+) and ~ do not commute.Observealso that cv is imaginary,so Ashtekar’s
connectionis complex.This is certainlyan unusualfeatureas it is like choosing
q and z = q + ip as canonically conjugatevariablesin ordinary mechanics!
We must thus supplementthe formalism by a reality constraintcorresponding

to z + ±= 2q in order to ensurethat we end up with the correctnumberof
degreesof freedom.This extraconstraintis a somewhatunappealingfeatureof
theformalism.Therehasbeensomeconfusionin theearlyliteraturewhetherthis
couldbe a realproblem,especiallysincethe reality constraintin someexamples
seemsto be non-polynomial [211. The consensusat presentis that the problem
canbe consistentlydealtwith by first analyzingthe (complex) equationsand
then imposing the reality conditions. It is anyhowclear that, at least at the
classicallevel, thereshould be no problem sincethe theory is still equivalent
to Einstein’s theory, which is known to be perfectly consistent. At the quantum
level, however,the problemis tied up with someas yet unresolvedissuesrelated
to the constructionof a scalarproductin the Hilbert spaceof quantumstates.

Thereonly remainsthe Lorentz constraint.Anticipating the final result, we

evaluate the fully covariantderivativewith respectto A on eeam to get

D I rn\ .i—, I Pfl\ m

mt~a ) =
1—’m i,eea I + C�abcPmbCc

The first term vanishesby the covariantconstancyof the dreibein (this is not

entirely trivial becausethe derivative D~acts only on the flat index a; the
full covariantizationis achievedby including the factore). The secondterm is
nothingbut the Lorentzconstraint (2.17).

Finally, we haveto identify the variablewhich is canonicallyconjugateto A.

It is just the “densitized” inversedreibeindreibein CCatm introducedabove.A
short calculationconfirms that

{ë~(x),p~b(y)} = abóntm5(2)(X,Y) (3.12)

andtherefore

{~(x),Anb(y)} = 2i5a

6ó~

2~(x,y), (3.13)

wherewe havedefinedë.~’ eeam.To summarize,we havenow succeededin
reformulatingthe whole theory in terms of the new connectionAm” and its
canonicallyconjugatevariableë~.Theconstraintsaresimply given by

mj’ a~

Eabcerne,~iFmnc 0,

= 0, (3.14)

andare thusmanifestly polynomialunlike the original expressions(2.25) and
(2.24). This result constitutes a major simplification andfacilitatesthe search
for solutionsto the quantumconstraints.An extraadvantageis that we do not
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needto imposethe requirementthat the new variable ë~’be invertible in con-
trastto the usualmetric formalism,whereboth the metric and its inverseare
requiredfor the formulationof the canonicalconstraints.This is in accordwith
speculations[22] thatprior to the emergenceof a “semi-classical”space—time
characterizedby areferencebackgroundmetric,thereshouldbe a “topological
phase”of quantumgravity characterizedbyasingularvacuumexpectationvalue
of the metric (or the vielbein).We alsonotethatthe aboveexpressionsprovide
a realization of the canonicalconstraintsof gravity on the phasespaceof an
SO(3) Yang—Mills theory (see,e.g., ref. [23] for a further discussionof this
point).

The originaldefinition of the new variables[14,15] is actuallyslightly differ-
ent from the one employedabove,although,of course,equivalent.To recover
the variablesas definedthere,we contractthe densitizedinversedreibeinand
the connectionfield A with Pauli matricesaccordingto

rn — rn
eafi = ea aaap’

Arnc,p Amaaaap, (3.15)

replacingLorentz indicesby spinorialSU(2) indices.The field is referred
to as a“soldering form” (it “solders” upperworld indicesto spinorial tangent
spaceindices).In termsof thesevariables,the Poissonbracketsbecome

{ë~(x),A~~~(y)} = (2o~~o~~—ôpó~~)ôrnó2(Xy (3.16)

The reasonfor this slightly different choice is thatAshtekar’sconnectioncan
be understoodas originating from the four-dimensionalspin connection:the
connection(3.15) is nothingbut the “pullback” of the d = 4 spin connection
to the space-likehypersurface(this observationis also usefulas a mnemonic
device).To seethis, wecontractthe spin connectionwith a y matrix andwrite
the resultaccordingto

WmABY~=
0)mabYab+ 2WrnaOYaYO. (3.17)

Using the formula 0)abO = �~O(ab)and

- (tic 0\ ~ 0\

Yab = ‘~abc~ü ~) , YOYa = ~ o tia) (3.18)

wejust get Ashtekar’sconnection.Thefreedomin choosingthe signof the coef-
ficient a preciselycorrespondsto the two chiralitiesof the spinor on which the
connectionfield acts.

The fact that two connectionsAma havevanishingPoissonbrackets,whose
direct proof was not entirelyobvious,can now be regardedas a consequence
of this observationandthe fact that the Lorentzcovariantderivativeappearing
in supergravitytheoriescoincideswith (3.3). As is well known (andas we will
see in sections4 and5), the invarianceof the supergravityactionunderlocal
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supersymmetrytransformationsimplies the existenceof a further constraint,
with the time component of the gravitino acting as the Lagrange multiplier.
This constraint contains the combination D[mWnl, whereD~is the pullback of
the four-dimensionalspin connectionappearingin (3.17) and thus precisely
the covariant derivativewith respectto Ashtekar’sconnection.Sincetwo local
supersymmetrytransformationscommuteto give a translation, the canonical
bracketbetweentwo supersymmetryconstraintsshouldgive rise to (amongst
otherthings)thediffeomorphismandthe Hamiltonianconstraints.In the actual
computation,theseconstraintoperatorsarisefrom commutingtwo fermionsand
mustthereforebe expressiblein termsof thefield strength(3.8). In otherwords,
consistencyof the canonicalformalism with local supersymmetryautomatically
implies the resultsderivedabove!

3.2. SOLUTION OF QUANTUM CONSTRAINTS

As is well known,the quantizationprocedureconsistsin replacingthe classi-
cal Poisson(or Dirac) bracketsby quantumcommutators,or, equivalently,in
replacingthe momentumvariablesby differentialoperators.Thereis, however,
someambiguityheresinceit is by no meansclearfor a highly non-lineartheory
suchas Einstein’stheorywhich variablesoneshouldreplacein thisway. For in-
stance,in themetricformalismdiscussedin section2, themostnaturalchoiceis
to replacepatm by ih~/ôCma,aswehavealreadydiscussed,but onecouldequiv-
alently chooseto work with the inversedreibeinand its canonicallyconjugate
variableinstead.It is alsoclearthatdifferent choicesmay beexpectedto leadto
inequivalentquantumtheories,a phenomenonthat is alreadyknown from flat
spacequantumfield theories[24]. In fact, it is preciselythe hopethatquantiza-
tion in termsof the new variables may lead to a theory that is somehow“better”
defined than quantum gravity in the metric formalism, which leads to basically
intractableequations.In this section,wewill briefly discusstheconstructionof
solutions to the Hamiltonian constraint.The first solutions of this type were
obtainedin ref. [16]; unfortunately,they arenot annihilatedby the diffeomor-
phismgenerator.Nonetheless,thatwork constitutedconsiderableprogress,since
it wasthe WDW constraintwhich hadresistedall previousattemptsat solution,
not the diffeomorphismconstraint.In subsequentwork [17], a more abstract
framework was introduced,wherefrom the outsetone dealswith diffeomor-
phisminvariant objects(knot andlink classes).This requirestheconsideration
of yet newandmoreexoticphasespacequantities,the “loop variables”,andthe
reformulationof the constraintsandthe canonicalbracketsin termsof them.

In accordancewith ref. [161, we takeAshtekar’sconnectionas the basicvari-
ableandreplace

~ ó/öAma(X) (3.19)
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(we seth = 1). An unusualfeatureis that the inversedensitizedmetric is now
representedby a differentialoperator,i.e.,

mn 15
gg (x) = 15Ama(x) t5Ana(x) (3.20)

To obtainthe metric itself, onewould thushaveto solvethis relationfor ~

clearlynot an easytask! In addition,theremaybeaproblemwith shortdistance
singularitiesresulting from the clashof two functionaldifferential operatorsat
coincidentpoints, which will show up in a factor ~(2) (0). We will ignore this
difficulty for the moment,but it is plainly evidentthatwhateversolutionsto the
quantumconstraintscan befound, they will not be easyto interpret.

In makingthe transitionto the quantumtheory,we mustalsodecidehow to
order the operators.For instance,it will now matterwhetherthe differential
operatorsin the Hamiltonianconstraintareplacedto the left or to the right of
Fmna(A). The first possibility wasconsideredin ref. [15], whereasthe second
oneunderliesthe work of ref. [16]. We will adoptthe secondprescriptionand
put the operatorsto theright for the moment.With this choiceof ordering,the
WDW constraintbecomes

Eabcea~b~mnc fabcF(A(X)) ~ . (3.21)ôAma(X) Anb(x)

For the constructionof solutions it provesconvenientto first considerthe
Lorentz constraint.As is well known, the basicLorentz invariant wavefunc-
tionals are the Wilson loops. We parametrizea closed 1oop y by a function
/~‘(s); the parameters is normalizedby requiring y (s) = y (S + 1) (we will
assumethe function y(s) to be periodic ins, so thatthe basepoint of the loop
canbefreely shifted). The Wilson 1oop is

~[A] = TrPexp~A, (3.22)

whereP denotespath orderingfrom right to left along the orientation of the
loop (the dependenceon the basepoint of the 1oop dropsout in the trace).
To evaluatethe functional derivativeson thisexpression,we needa little more
notation;wedefine

Uy(s/,s)EPexpfdt~m(t)Am(y(l)), (3.23)

so that ~J-~,[A]= TrU~(l,0)~[forthe sakeof clarity, we will sometimeswrite
(3.23) as U(y(s’),y(s))j. U7(s + l,s) is thereforethe holonomyatthe point
y (s) definedby paralleltransportingthe connectionA = dx

tm Amatia from y (s)

to y (s + 1), i.e. oncearoundthe 1oop y.
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Acting twice on the Wilson loop functional (3.22) with the operator(3.19),

we obtain

15Ama(x)15Anb(y) W~[A] (3.24)

= /d~m~ /ds’~(s’)ô(3)(x~y(s))15(3)(y,Y(s’))

x Tr(U?(l,s’)aaUy(s’,s)abLT./(s, 0))

+Jds~(sJds/~m(s/o(3)(y,y(sn15(3)(x,y(st))

xTr(LTY(l,s’)ahuy(s’,s)aaUY(s,0)). (3.25)

When x and y coincide, this expression becomes symmetricin the indices a

and b, and m andn, respectively.To takecare of the divergentfactorô(2)(O)

which arisesin this limit, oneregulatesthe15 function, for instanceby fattening
the 1oop into a sausage[16] #2 We now seethat the aboveexpressionvanishes
upon contractionwith thefactor fabcF,nncby antisymmetry.It is easyto seethat
this mechanismdoesnot work for the diffeomorphismgenerators,for which
the field strengthis not contractedwith an antisymmetrictensor,as is evident
from (3.14).The Wilsonloop is thusannihilatedby the Lorentzconstraintand
the WDW constraint,but not invariant under diffeomorphisms.It may seem
paradoxicalthat a solutionof the WDW constraintdoesnot also solve the dif-

feomorphismconstraints,sinceit is knownthat—atleastat the level of Poisson
brackets—thecommutatoroftwo suitablyweightedWDW operatorsshouldpro-
duceamongstotherthingsa spatialdiffeomorphism.However,detailedanalysis
showsthat this is not quite true becauseof orderingsubtleties[16]: the struc-
turefunctions (not constants!)on the right hand sideof thecommutatorappear
to the right of adifferential operator,andthereforegive rise to extraunwanted
contributions.This is adirectconsequenceof our choiceof operatorordering*3.

~2 Evidently, this regularizationmustpreservethe symmetryunder interchangeof a and b, or in

andn, since otherwiseany result can beobtained.This is a weakpoint in the argument.
~ Experiencewith string theory teachesus that we should even anticipate difficulties of this

kind. The Virasoro algebra,which is nothing but the algebraof the canonical constraints
associatedwith reparametrizationinvariance on the two-dimensionalworld sheet, contains
an anomalouscentral term that is rooted in very similar ordering ambiguities. The central
term is, in fact, responsiblefor much of the non-trivial structureof string theory, as is well
known [7}. Moreover, becauseof the central term, it is inconsistentto impose the full set
of Virasoroconstraintson the physicalstates; ratherone useson1y half of them in a Gupta—
Bleuler formulation. There is consequentlyno reasonto expect that the ordering problems
of canonical gravity in four dimensionscan be easily resolved; on the contrary, one would
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To overcomethe difficulties with the diffeomorphismconstraintandto con-

struct solutionsto all the constraints,onemight now try, for instance,to “av-
erage” the wave functional !I~,[A] overall loopswhich arediffeomorphicto y.
This is, however,a difficult task to perform in practice,sinceno suitable (and
manageable)measurein the infinite-dimensionalspaceof diffeomorphismsis
known.A betterway out, proposed in ref. [17], is to switch from the above “con-
nectionrepresentation”to the so-called“loop representation”,wherethe basic
objectsare no longer functionalsof the Ashtekarconnectionandtheir canoni-
cally conjugatevariables,but of loops (or knotsandlinks). Although thereis no
roomto discussthis approachin detail here,we sketchthe basicidea. To begin
with, oneconsidersnewvariablesin phasespacein additionto the Wilsonloop,
namely 1oopswith multiple insertionsof the canonical variable ~‘ along the
loop. To systematizethe notation, we denote the basic Wilson loop by T°[y],
and define generalized 1oop variables T°with n insertionsof ~“ at the points
~ (si ), ...~~(sn) on the 1oop (which weassumeto be “time ordered”from right
to left alongthe orientationof the curve) by

‘rn r, . lm,,’-mI — ‘-r r~ I i m, j ~ a, r~ I

~ ~ = 1r~~I,sfl)ea ~Y~5n))ti (Jy~5n,S~_J
x ..-U~(s2,si)~’(y(si))a”U(s1,0). (3.26)

An importantresult is that, with respectto the Poissonbrackets,these1oop
variables form a closedalgebra.If two loopsdo not intersect,the Poissonbracket

of the correspondingloop variablesclearly vanishes;otherwise,the result is
a linear combinationof 1oop variableswhich are basedon new 1oopsformed

by joining the loopsat the points of intersection (see ref. [17] for a detailed
description of the rules). The strategy is now to “forget” how these variables
werederivedand how their Poissonbracketswerecomputed,andto takethe
1oop variables and their associated Poisson algebra as fundamental. In this way

onearrives at a formulation which no longer makesreferenceto the original
phasespacevariables(this transitionto a new representationcan bethought of

as somekind of Fouriertransformation).
An advantage of this proposal is that one is working with diffeomorphism

invariantobjects(knots and links) from the outset.On the otherhand,it is now
much more difficult to obtain explicit representationsof the quantitiesone is

dealingwith, sinceall operationsmustbedefinedin termsof loopvariables.For
instance, the WDWoperator is no longergiven by an explicit expressionlike
(3.14), but rather as a kind of areaderivativeof the loop [17]. Quantization
now also works in a different way. Rather than to replace the original phase
spacevariablesè~”and Am” by differential operators, one “quantizes” the 1oop

expectthe requirementof closure to give rise to severeconstraintson the allowed theories,
as is the casein string theory. This point hasalso beenemphasizedby F. Englert (private
communication).
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algebradirectly by replacingthe Poissonbracketsof T°by quantumcommu-
tators.The resulting quantumtheory is quite different from quantumgravity
in the connectionrepresentation.Sinceinvarianceunderdiffeomorphismsand
local Lorentztransformationshavebeenbuilt in from the start,it only remains

to verify that the WDW constraintis satisfied.This requiresa bit of technical
trickery which we will not go into here,however.

Beforeclosing this section,we would like to mentiona potentially serious
drawbackof all thesesolutions,which was first pointedout in ref. [25]. As it
turns out, all of them areannihilatedby the operatorrepresentingthe dreibein
determinant!This is mosteasily seenin the connectionrepresentation,where
the metric determinantis representedby theoperator

g(x) = fahcemnPóA~( ) ôA~(~)15A~~(x) (3.27)

This operatorannihilatesthe Wilson 1oop for the very samereasonthat en-

suredthe vanishingof the WDW operatoron it, namelythe fact that one is
contractinga symmetric tensorwith an antisymmetricone (the problem with
the factor ~(3) (0) is arguedaway asbefore).Furthermore,the difficulty cannot
be circumventedby allowing for solutionsinvolving linear combinationsof an
arbitrarynumberof kinks andself-intersectionsof the loopsas well as (finite)
linear superpositionsof multiple loops [25]. Although onemight think that the

degeneracyof the metric is not really such a seriousproblem becausethe met-
ric (andhenceits determinant) is not an observable,this meansin particular
that the above expressionssolve the constraintsregardlessof the value of the
cosmologicalconstantandthus cannotdistinguishbetweenphysically very dif-
ferentsituations!It is thereforesomewhatdoubtful whetherthesesolutionsare
the appropriateonesfor the descriptionof conventionalphysics.

Theseunsatisfactoryfeaturesandthe desireto find non-degeneratesolutions
havemotivatedrecentwork which is basedon the oppositeoperatorordering
prescription(i.e., the differential operatorsin (3.21) now appear10 the left of
thefield strengthF). Namely, it canbeshownthattheexponentialof theChern—

Simonsactionmuliplied by the inverseof the cosmologicalconstantsolvesthe
WDW constraint with a cosmologicalconstant [26] [the WDW operatoris
then just the sumof the original expression(3.14) anda term Ag(x), which
is representedby the operator(3.27)]. This solution is very different from the
onesconsideredaboveas it is supportedon all of the space-likehypersurface,
and not just on closedloops. Moreover,it is clearly non-degeneratebecauseit
is not annihilatedby the operatorAg(x). It is thenalso possibleto obtain non-
degeneratesolutions in the loop represenation.It can be shown that the ioop
transform,i.e. integration overall connectionsfor a given closedloop y (with
the exponentialof the Chern—Simonsactionplaying the role of the factor e’~
for ordinaryFourier transformations)leadsto knot and link invariants [27].
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Although this result is not completelyunexpectedin view of the resultsof ref.
[28], it doespoint to an intriguing andbeautiful connectionbetweenquantum
gravity andknot theory.A furtherdiscussionof theseissuesis unfortunatelyis
beyondthe scopeof theselectures.

4. Canonical gravity and supergravity in three dimensions

Insteadof furtherdwelling on thefour-dimensionaltheory,wewill nowtakea
stepbackandconsidergravity andsupergravityin threespace—timedimensions
(for a generalintroductionto supergravityandmanyreferences,seeref. [6]) #4,

The main reasonis thatthe three-dimensionaltheoriesprovidea settingfor the
formalismwhichfrom ourpointofview is morenaturalin severalrespects.Most
importantly,puregravity andsupergravityaretopologicaltheoriesin threedi-
mensions,which meansthattheydo not possesspropagatingdegreesof freedom
[22]. Bona fide solutionsto all constraintscan be found. In addition, genuine

observablesin the senseof Dirac canbe constructed:they arejust given by the
three-dimensionalanalogsof the 1oop variablesintroducedin the foregoingsec-
tion andtheir supersymmetricgeneralizations.As a consequence,the solutions
to the quantumconstraintscanbe directlyobtainedby applyingthe observables
to a suitable“vacuum” functional,which is just 1 in the bosoniccase,andgiven
by formula (4.41) below in the caseof supergravity.A technicaladvantageis

that thereis no needfor areality constraintin threedimensions.
Three-dimensionalgravity andsupergravityhavealreadybeenstudiedin the

past.The“physics” of puregravity (absenceof gravitationalexcitationsin empty
space,conicalsingularitiesatthe locationsof masssources,etc.)werefirst exam-
inedin refs. [30—321. SinceEinstein’sactionis superficiallynon-renormalizable
in threedimensions,the theorywasfor a long time thoughtto makeno more
senseasaquantumtheorythangravity in four dimensions.Thefact that pure
gravity in threedimensionsis a topological theory with a finite-dimensional
phasespaceand hencecanbe solvedcompletelycamethusasquite a surprise
[22]. An essentialingredientin thatconstructionwasthe reformulationof Ein-

stein’s theoryasa Chern—Simonsgaugetheory. This new versionof the theory
andthe Wilson loop observableswerefurther studiedin refs. [33—35]. In this
is section,we will, however,not makeuseof thisformulation,but ratheradopt
the versionof ref. [36], which is a direct extensionof Ashtekar’sformalism to
puregravity in threedimensions,andhencecloserto the main subjectof these

lectures.Needlessto say that the “physics” is the samein both formulations.
As for supergravity,our resultsarealso not entirely new, with the exceptionof

~ The first canonicaltreatmentof supergravityin four dimensionswas given in ref. [29]. In the
contextof Ashtekar’snew variables,it was first discussedin ref. [21].



34 H. Nicolai and H.-]. Matschull / Aspectsofcanonicalgravity and supergravity

the solutionsto the quantumsupergravityconstraintspresentedin section4.2.
Wilson loopobservablesin supergravitywerealreadystudiedin ref. [37]. How-
ever,that work usesa superspaceformulation, sothe Wilson1oop is definedas
a supertrace,whereasit is explicitly written out in componentshere.Further-
more, our observationthat the fermionic topologicalmodesare relatedto (the

fermionicpart of) super-Teichmullerspaceappearsto be new.
As for notation,wewill switchgearsslightly by nowusingGreeklettersp, v,

for curvedindicesin the three-dimensionalspace—timeof signature (— + +),

but will continueto uselettersa, b, ... for the tangentspaceindicestransforming
underSO(1, 2), which now of coursewill appearas upperand lower indices.
We will usethe Levi-Civita tensorwith �012 = ~012 = + 1. Also, we will use
letters i, j, ... to denote space-like (now two-dimensional) curved indices, and

letters cv, /3 = 1, 2 to denotespinorindicestransformingunderSL(2,~R)~
SO (1, 2).

4.1. LAGRANGIAN, CANONICAL VARIABLES AND CONSTRAINTS

One of the main benefitsof the discussionin the the precedingsection is
that we do not haveto repeatthe laboriousderivationof Ashtekar’sconnection
from the metric formalism giventhere. Ratherwe will now makeashortcutby
exploiting the fact that this connectioncoincideswith the pullback of the spin
connection to the (now two-dimensional) space-like hypersurface ~, makingthe
usualassumptionthat thethree-dimensionalspace—timeis topologicallyequiva-
lent to ~ X Xg, where‘~‘gais two-dimensionalmanifold (Riemannsurface)with
g handles.It is convenientto usethe (first order) dualizedspin connection

At,” = 1~abc
0) (4.1)

in termsof which the Lorentz [i.e. SO(l,2)] covariantderivativeacting on a
two-componentspinore reads

D,,e = (a,~+ ~~aA~) �. (4.2)

,The otherrelevantvariableis, of course,the dreibeinen”. Observethat,in con-
tradistinctionto the four-dimensionalcasediscussedbefore,we do not commit
ourselvesto a specialLorentzgaugefor thedreibeinhere;thismeansthat instead
of a subgroupof the full Lorentzgroupwe retain thefull Lorentzgroupin three
dimensions,which is SO(1,2). Thefact thatwe aredealingwith SO(1,2) rather
thanSO(3) is the principal reasonthatwe do nothaveto imposea reality con-
straint in this casebecausethe spinorrepresentionSO(1,2) [which is nothing
but SL(2,IF1)] is real. Onecan usethe ~ matricesYo = i~2, Yi = a1 andY2 =

which leadsto
C

YaYb — ~7ab ~abcY .
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Forthefield strength,we havethe sameformulaasbefore,but with adifferent

sign for the quadraticpart:
— 1 bc ‘~ ‘~

4b4c 44

I pva — ~abc ~w = Up/lva —Uv

7lpa —�abc~~1p71v

Using thethree-dimensionalLevi-Civita tensordensity,wecan nowwrite down
the gravitationalaction

£ = ~eR = ~cPi~Pepc2Fvpa. (4.5)

Varying this action with respectto the dreibein, we seethat the field strength
Fpva mustvanish,in contrastto the four-dimensionalsituation,wherethe field
strengthis non-zeroin general.Hence,theconnectionA,,” is puregauge,atleast
locally. Thisshows explicitly that gravity in three dimensions has no propagat-
ing degreesof freedom.However, theremaybetopologicaldegreesof freedom
because,globally, the solutionscanbe non-trivial in the sensethat theredoes
not exista globally definedfunction g suchthat A,, = g~’O,,g.

The N = 1 supergravityLagrangianis a simpleextensionof (4.5), sincewe
only needto adda Rarita—Schwinger-typeactionto it. The Lagrangianreads

I’ — P~P(1 af’ 1— D “46
— � ~ vpa T ~Y/p vY1p) .

Here cu,
2 is a two-componentMajoranaspinor, i.e., ~7= WTC, whereC is the

charge conjugation matrix. The covariant derivative D,, hasbeendefined in
(4.2). In addition to being invariant under general coordinate and local Lorentz
transformations,theaboveLagrangianis invariantunderthelocal supersymme-
try transformations

cSyi,, = D,,�, ôe,,” = ~ 15A,,” = 0. (4.7)

As the Rarita—Schwingerterm is independentof the dreibein,the previous
equationof motion Fpva = 0 for the dreibeinremainsvalid, andthereforethe
field A is still puregaugelocally.The Rarita—Schwingerequation�1~vPD~yip = 0
implies that the gravitino field, too, is locally puregauge,sothat the theoryde-

scribesonly topological degreesof freedom.Thus we can alwaysfind a locally
definedspinor ~ such that yt,, = D,,~5.An obstructiononly arisesif the spinor
~ cannotbeglobally defined.In this caseyt,, dependson finitely many“super-
moduli”, so the theorystill lives on afinite-dimensionalphasespace.Variation
with respectto the connectionA,,” tells us that the covariantderivativeof the
dreibeinis equalto a fermionic bilinear (torsion); this equationcanbe solved
for A,,” in termsof the dreibein andthe fermionic torsion (“second order for-
malism”).

To derivethe Hamiltonian,we write the spaceandtime componentsof (4.6)
separately:

£ �~ (~et”Fija— ~eiaFtja + ~i1
1~),yi~ — ~7

1D,~j) . (4.8)
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The canonicalmomentaassociatedwith the bosonicfields read(here i, I,
denotetwo-dimensionalvector indices)

Pa’ = 15~/15é,a= 0, Ha’ = = 0, (4.9)

Pa’ = 15r/oéa = 0, Ha’ = = ~E”eja, (4.10)

and the fermionic momentaare (cv, /3, ... = 1, 2 are two-dimensionalspinor
indices; we use the convention that spinor derivatives always act from the left)

= óL/óy~’,,, = 0, (4.11)

it = 15L/15y~,=
2�cl’J(,. (4.12)

Observethat Ha’ andPa’ are rectangular(3 by 2) matrices.The constraints
(4.10) and(4.12) aresecondclass.Sowehaveto replacethe Poissonbracketsby
Dirac bracketsandthenusetheseconstraintsto eliminate,e.g.,Pa’, Ha’ andii”.
Doing this, we get the Dirac brackets(labeledby anasterisk)for the remaining
canonical variables,

~ (4.13)

= 2�,1,j15~
21(x,y). (4.14)

Observethat �~ is a densityof weight —1 andthe 15-function is one of weight
+ 1. The secondaryconstraintsinducedby (4.9) and (4.11) are

= ~�‘~Fjja, (4.15)

La 15L/ÔA,” = �‘~(Dieja — ~i/ii~a~i) , (4.16)

= e”D
1yi1~,, (4.17)

whicharenow first classwith referenceto the Dirac brackets.The Hamiltonian
is

H C,”7~aA,”Lay/tS. (4.18)

Thegeneratorof spatialdiffeomorphismshasa very similar form,

c,”7-ta + A,”La + 117,S. (4.19)

It is alsoelementaryto verify from the canonicalbracketsgiven abovethat
the variationsof the fields under the respectivelocal symmetriesare indeed
canonically generatedby the constraints(4.15)—(4.17),possibly up to terms
proportionalto the constraints;for instance,with S[�1 = 1 ~S,

= {S[c],y’,(x)}~, (4.20)

andsoon.
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4.2. OBSERVABLESAND QUANTUM STATES

Beforeconsideringthequantumtheory,we examinetheclassicalobservables.
According to the definition given in section2, such observablesmust weakly
commutewith the canonicalconstraints.Fromthe discussionatthe endof the
precedingsection,we know that the bracketsof the constraintswith anyfunc-
tional of thephasespacevariablesjustgivethevariationsofthisfunctionalunder
the correspondinglocal symmetries,possibly up to termsvanishingon the con-
straint hypersurface.Hence,the observablesmustbe invariant functionalswith
respectto spatialdiffeomorphisms,local Lorentz rotationsandsupersymmetry,
andthisis the definition which we will employ in the sequel.To streamlinethe
subsequentdiscussionsomewhat,wewill usedifferential formsin theremainder,

ea=dxte,a, Aa=dxlA,a, yi=dx’yi,, (4.21)

which representsectionsof vectoror spinorbundlesover the two-dimensional
space-like hypersurface. Wefind it convenient to define A ~y~A”, whichunder
local Lorentz rotationstransformsas A(x) —÷ h~(x)(d + A(x))h(x) with a
globally defined h(x) E SL(2,I~)(the contracteddreibein ~yaea transforms
in exactly the sameway). Since the constraint (4.15) implies flatnessof the
connectionA, we concludethat A = g’ dg locally for somematrix function
g(x) taking valuesin SL(2,ER) [under gaugetransformationswe haveg(x)

g(x)h(x)]. The non-triviality of the flat connectionA is “measured”(and, in
fact,completelycharacterized)by its holonomiesaroundnon-contractibleclosed
loopsy. If the holonomyis non-trivial, i.e. differentfrom unity, g(x) cannotbe
extendedto aglobally single-valuedfunction: if we startat somepoint y (s) with
amatrix g(y(s)) and transportit aroundthe non-contractibleloop y, we end
up with adifferentmatrix g(y(s + I)) = gyg(y(s)) with someg7 e SL(2,~R)
(noticethat gy appearsto the left as A = g~ dg is single-valuedaroundy). It

is now completelystraightforwardto evaluatethe pathorderedexponentialfor
an arbitrarycurveC startingat x andendingaty (we usethe samenotationas
in section3.2). We have

= Pexp(IA) = g(y)’g(x). (4.22)

Undera local Lorentztransformation,U~(y, x) —~h (y)’ Uc(y, x)h (x).Thus,
closingthe loop by shifting the point y aroundthe loop backto the basepoint
x, we arrive at

U~(x)~Pexp (_~A) = g’(x)gyg(x), (4.23)
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whose trace depends only on gy. This trace is Lorentz invariant by construction,
but it is easyto seethatit is alsoinvariantunderdiffeomorphismsandsupersym-
metry. Diffeomorphism invariance follows from the flatness of the connection
A, which allows usto continuouslydeformthe loop without changing the value
of (4.22). Supersymmetryfollows trivially from the invarianceof A underthe

local supersymmetrytransformations(4.7).Consequently,the Wilson loop ob-
servableneedsno modification in supergravity.In passing,andalreadywith an
eyetowardsthediscussionin section4, we note thatdiffeomorphisminvariance
of the Wilson 1oop (andthe otherobservablesas well) is lost as soonas mat-
ter couplingsareswitchedon, sincethe field strengththen no longer vanishes,
and the Wilson 1oop picks up extracontributionswhen ~‘ is deformed (by the
non-AbelianStokestheorem).It shouldthusbe kept in mindthatpuregravity
and supergravity in three dimensions represent a rather special situation, and
that the resultsmay have no relevanceto the real world, which is filled with
propagatingandnot just topologicaldegreesof freedom.

Observablesdependingon the canonicalvariableHa’ or, equivalently,on the
dreibeinform Ca, alsoexist, aswe alreadyknowfrom ourbriefdiscussionofloop
variablesin section3.2; the differenceis that thesephasespacefunctionalsare
now genuineobservablesin the connectionrepresentation.We will write these
observablesin the form

(4.24)

with locally Lorentzinvariantclosedone-formsw on the space-likehypersurface
(we will not explicitly indicatethe dependenceof the one-formon ~). Closure
is requiredbecausewe must have f~w = 0 for a contractible closed1oop C;

this meansthat the value of w is unaffectedby continuousdeformationsof
the loop y, which is just anotherway of expressingthe invarianceunderspatial
diffeomorphisms.Invarianceunder local supersymmetryholds wheneverthe
one-form variesby the exterior derivative of a single-valuedfunction f, i.e.,
15(0) = df with f(y(s + 1)) = .f(y(s)) for anarbitrary closedloop y because
then ó~~w = ~,df = 0. For puregravity (not supergravity),an appropriate
one-formcanbeimmediatelydeducedfrom the resultsof section3.2; it is

0)(1) [y;x] = �,1dx’T’ [y;x]’ = TrU~(y(l),x)yaea(x)Uy(x,y(0)), (4.25)

wherey is againa non-contractibleclosedloopalongwhichx varies.Lorentzin-
variancefollows becauseYaC” transformsaccordingto theadjoint representation
underLorentz transformations,andclosurefollows from

dw~(x) = TrUy(y(l),x)yaDea(x)Uy(x,y(0)) = 0, (4.26)

sinceDc” = 0 is just the Lorentz constraint in pure gravity [in the explicit
computation,we usethe well-known formulas dU~(.,x)= U~(.,x)A(x)and
dU~(x,-)=
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Unlike (4.23), however, (4.25) must be modified in supergravity,because
Dc” = ~7y”yí � 0 andc’’ is not invariant underlocal superymmetryanymore.
We now find (with w dx’ w)

ö~w~(x)= �y”yti(x)TrUy(y(l),x)yaUy(x,y(O))

= E(x)U~(x,y(0))U~(y(l),X)yJj(X)

- iii,(x)U~(x, y(0))U~(y(l ),x)� (x)

= ~,(x)g (x)gyg(x)�(x)—~(x)g1(x)gyg(x)yJj(x), (4.27)

whereweusedtheformulaU(x,y(0))U(y(l),x) = U~(x) =g’(x)gyg(x),
the Fierz identity

Y~pYayb= — C~,’Cpb, (4.28)

andthe relationC_IgTC = g~for g E SL(2,IJ~).Moreover,theone-formw~
is no longer closedsince

0
11w~(x)= —i~71,(x)U~(x,y(0))U~(y(l),x)yi11(x)

= —~71,(x)g~(x)gyg(x)yJj1(x), (4.29)

whereweusedtheLorentzconstraintandtheFierzidentityoncemore.To cancel
thesecontributionswe mustnow constructa one-form~ dependingon the
gravitinosas well.

The desiredextensionis obtainedby addingthe one-form0)(2) (x) dx’ x
w,

t2~(x)with
y(l)

w~2~(x) —/ dy~~
1(y)U~(y,x)yt,(x) (4.30)

—f dy~~1(y)U~(y,y(0))U~(y(l),x)yt,(x) (4.31)
y(0)

to w~(notethat the pointsx and~‘(O)= ~(l) are connected“along different
sides”of the loop y in the two terms).Defining ~ = ~1) + ~(2) andmaking
useof the supersymmetryconstraintDyi = 0, it is straightforwardto showthat
dw = 0 and15~w= df, wherethe function

y(l)

f(x) / dy
3~

1(y)U~(y,x)e(x)

+ J dyJ~j(y)Uy(y,y(0))U~(y(l),x)�(x) (4.32)

y(O)

is globally defined,as is most easily seenby againexpressingU~in termsof
g(x) andgy. We note that ~w~= 0 if thereexistsa globally definedspinor
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ç5 such that yi = D~.This can be seenby inserting U~(y,x) = g1 (y)g(x)
and g(x)D,~(x) = O,(g~(x)) into the definition ofw~2~and then integrating
overy, whichgives a total derivative.Consequently,this observable“sees”only
the topologicallynon-trivial partof the gravitino. This is completelyanalogous
to the result that the holonomy is unity for trivial gauge connections,where
A = g~’dg with globally definedg(x). We mention that the observablesfor
supergravitycoincidewith thoseconstructedfrom a “super Wilson loop” in

a superspaceformulation of supergravity [37], but so far they have not been
explicitly written out in components.

The observables that we have constructed are therefore sensitive only to the

topological excitations, of which there are only finitely many independent ones
for a given surface of finite genus, and it is thusappropriate to recall how many
degreesof freedomthey represent.For the bosonictheory it is known that, on
a surfaceof genusg > 2 and for an arbitrary gaugegroup G, the dimension
of the spaceof non-trivial flat connectionsmodulo gaugetransformationsis
(2g 2)dimG #5 This follows from the relation fJcvj/3](v7’/3J~ = I for the

non-trivial homologycycles,with the correspondingrelation fJ g~,g/J g~1gp =

1 for the holonomies,which removesdim G degreesof freedom;anotherdim G
degreesof freedomareremovedby conjugatingall holonomieswith an arbitrary
SL(2,E~)matrix. However, one must be a little careful becausethis counting
argumentonly worksfor genericmatrices,andin certainspecialcasestheremay
be extra solutions. Such is the case for genus g = I (the torus), where the
dimension is 2 rank G *6; for g = 0 (the sphere)thereareno non-trivial flat
connections.

As for the non-trivial gravitino modes,the result is perhapslesswell known,
so we explain it in a little more detail. In a given backgroundcharacterizedby
the flat connectionA = g~dg, the supersymmetryconstraintis D(A)yi = 0,
which is equivalentto the equation(in components)

0
1,(g(x)y111(x)) = 0. (4.33)

This meansthat,at leastlocally, we can alwaysfind a spinor çb(x) suchthat

g(x)yt1(x) = 01/(x). (4.34)

Imposingthe periodicity constraint w,(Y(l)) = yi(y(O)) for any non-trivial
cycle y andusingthe previousresults,we obtain the condition

g~’~(y(l)) = (/)(y(O)) + (/)y. (4.35)

#5 Sincedim SL(2,n)= 3, the dimensionis 6g —6, which suggeststhat the moduli spaceof flat

SL(2,n) connectionsis directly relatedto Teichmüllerspace.The preciserelation is explained
in ref. [38].

#6 A detailed discussion of this case may be found in ref. [36].
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Here ~ is a constantspinorthat representsthe obstructionto defining~ glob-
ally on the surface. In otherwords, this spinor is the fermionic analog of the
holonomygy. Justas the holonomies,the constantspinors~ are subjectto a
relationthat follows from the constrainton the homologycycles. To obtain it,
we simply iterate (4.35)by transportingçb(x) aroundthe homotopicallytrivial

curve flcvjfljcvf’fl11, demanding that ç~(x) return to its original value in this
process.Sincethe spinorhastwo components,this removestwo degreesof free-
dom; anothertwo canbe subtractedby noticing that (4.34) is invariant under

constantshifts ~(x) F—* ~5(x) + ~ which leadsto çb~ ~ + (g~’— l)~5~.
Altogether,we arrive at the result that the spaceof fermionic moduli hasdi-
mension4g — 4, which suggeststhat it is nothingbut the fermionic extension
of Teichmüller space(again,we haveto keepin mind that the countingworks
only for the genericcase,sothe result for the torus is different).

Remarkably,the observablesfound hereenableus to find genuinesolutionsto
the quantumconstraintsaswell. Namely,upon makingtheusualreplacementof
the phase space variables by operators, we needonly identify a suitable“vacuum
functional”, which is annihilated by the constraints,andwhich, for the bosonic
theory, is simply ~I’~J[A] = 1 (for supergravity,it is slightly more complicated,
seebelow). Collectivelydenotingthe observablesby ~ wethenobtain further
solutionsby applying theseoperatorsto the vacuumfunctionalaccordingto

W[A] = [JOt’~1.~[A]. (4.36)

This shows that, at leastfor gravity and supergravityin threedimensions,the
quantumstatesarein one-to-onecorrespondencewith theobservables[22,361.

The theory is quantizedin the usualway by the replacement

Ha’(X) —f —i15/15A,”(x). (4.37)

The correspondingreplacementfor thegravitino is slightly moresubtle:the op-
eratorrealizationof theDirac brackets(4.14) necessarilybreakseithermanifest
Lorentzor reparametrizationinvariancebecausethespinorsareMajorana(self-
conjugate).We take ~/a yti~~as the basicvariable (1 is a world index); it is
an anticommutingelementof a Grassmannalgebra.The anticommutatorcorre-
spondingto the Dirac bracketis thenobtainedwith the functionaldifferential
operator(alwaysassumedto act from the left)

yt
2~(x) = iô/dm~(x)= —iC~~~15/ômjp(x). (4.38)

The operatorialrealizationof the supersymmetrygeneratorreads

S = D2~—iD115/ôi~, (4.39)

wherewe havenow suppressedthe spinor indices.The Lorentz constraintbe-
comes

L~= 2iD,ô/ÔA,” + t/YatS/15’7. (4.40)
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A non-trivial solution to the quantumconstraintscan now be constructedby
first solving the supersymmetryconstraint89’ [A, vj] = 0, which is the “square
root” of the WDW equation,as it is first order in the functional differential
operators.Set ‘i = D1~5anddefinethe vacuumwavefunctional

= exp(~ifdxc5D2Di~5). (4.41)

Using the fact that [D1, D2] = 0 for flat connectionsA, it is nowquite straight-
forwardto showthat (4.41) is indeeda solution.To establishinvarianceunder
local Lorentz transformations,or La!? = 0, we mustkeepin mind thatthereis
a hiddendependenceof ~ on A which canbe deducedfrom

15 (5
0 = 15Ai”(x)~’~ =

= Dl(5~~) + ~ (4.42)

As before,furthersolutionscannow beconstructedby operatingon thisvacuum
statewith the observablesgiven above.

As a final remark,let usnotethatthe basictrick of generatingsolutionsfrom
a vacuumstateby meansof observablesis, of course,not limited to topolog-
ical theories,but canalsobe appliedin moregeneralcircumstances.For this,
however,it is first of all necessaryto identify suitableobservables,andthis may
be a difficult taskas we haveexplainedbefore.Even if onesucceedsin finding
observables,theremay remainproblems.Above all, one must makesure that
thereareno quantumanomaliesin the algebraof constraintsandobservables
(sinceotherwise,it mayno longerbetrue that (4.36) solvestheconstraintseven
though !J-~does).Furthermore,oneshouldmakesurethat theobservablesform
a completeset,sinceotherwiseonemaynot find all solutions.A nice featureof
three-dimensionalpuregravity andsupergravityis thatneitherof theseproblems
showup, so thesetheoriescanbesolvedcompletely.

5. Matter coupledsupergravity

A obviousdefectof themodelsdiscussedin theprevioussectionis theabsence
of physical (propagating)degreesof freedom. Although the four-dimensional
theory discussedin section2 does havepropagatingdegreesof freedom (the
helicity ±2statesof thegraviton), thereit is difficult to includematteras well.
The problemhereis not to show that the constraintscan be cast into a poly-
nomial form but ratherthe fact that the wholeedificeerectedaroundthe 1oop
variablescollapsesas soonas any matter degreesof freedomare present;the
formal solutionsto the quantumconstraintsceaseto be solutions,andit seems
clearthat no simplemodification of theloop solutionscan remedythis defect.
Ouraim in this sectionis to studytheorieswith matter,the simplestonesbeing
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the non-linearSL(2,ER)/SO(2) non-linearamodel in threedimensionsandits
locally (N = 2) supersymmetricextension.Thesearethedimensionallyreduced
versionsof puregravity andsupergravityin four dimensions,respectively(see,
e.g.,refs. [39,40] for furtherdetailsof dimensionalreduction,andref. [41] for
arecentdiscussionof extendedsupergravitiesin threedimensions).

Although the actual supergravityLagrangianis quite complicatedthereare
threeessentialfeaturesthat may eventuallyenableus to makesome progress.
First of all, thesupersymmetryconstraintcan beregardedasthe “squareroot” of
theWDW operatorandonecanhopethatthe correspondingquantumconstraint
may be easierto solve (this idea is not new; see,e.g., ref. [42] for another
attemptto exploit it). We will seeexplicitly that the familiarorderingproblems
are completelyabsentin the supersymmetrygenerator;this is the analogin
quantumsupergravityof the result that the vacuumenergyin supersymmetric
theoriesvanishes[43]. Moreover, all other constraintequationsfollow from
thesupersymmetryconstraint,providedthereareno anomaliesin the quantum
algebraof constraints.The secondnew featureis the presenceof the “hidden
symmetries”.There is a conservedNoethercharge,which is an observablein
that it weakly commuteswith the constraints.In the quantumversion of the
theory,thischargeatleastin principle allowsus to constructnew solutionsfrom
old onesby repeatedapplicationof the chargeoperatorto anygivensolution (as
we alreadysawin the lastsection).Our intention hereis to studythe simplest
non-trivial example,N = 2 supergravityin threedimensions;thistheorycan be
alternativelyobtainedby dimensionalreductionof simplesupergravityin four
dimensions[44,6]. Thisprovidesasimpler versionof the canonicaltreatment
of extendedsupergravitiesthanthe onegiven in ref. [18].

5.1. N = 2 SUPERGRAVITY IN THREE DIMENSIONS

In this section,we construct an N = 2 supergravityLagrangianwhich de-
scribesthe interactionsof gravity andtwo gravitinoswith one mattermultiplet
correspondingto the propagatinghelicity ±2and±~statesof simple super-
gravity in four dimensions.We startby addinga secondgravitino to (4.6), so
that

£grav = �1” (~e,,”Fvpa+ ~ , (5.1)

whereI = 1,2. To avoid cumbersomenotation,we combinethetwo Majorana
spinorsyi~into a single complexone (yí,~ + iyí,~)/v~(with analogous
definitions for the otherspinorsbelow),andrewrite the actionas

£grav = �“~ ~ + i~7,,D~w,,) (5.2)

[note that (5.1) and (5.2) differ by a total derivative]. Thisactionis againin-
variantunderlocal Lorentz rotations,diffeomorphismsandthe supersymmetry
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transformation

= D,,�, ô~e,,= ~yayt,,~ya� (5.3)

which correspondsto (4.7) with the real (Majorana) spinor c replacedby a
complex one. In addition, it is invariantundera global U (1) symmetry yt

ei~yt.This extensionof the N = 1 supergravityLagrangianstill containsno
propagatingdegreesof freedomand, in fact, existsfor arbitraryN.

To couple this systemto matter (i.e. propagatingdegreesof freedom), we
must convert the global U (1) symmetry into a local one and introduce a gauge
connectionQ,,, which (in secondorder formalism) is a compositefield made
out of the matterdegreesof freedom.Assigninga U (1) chargecv (which will be
determinedshortly) to thegravitino,thecovariantderivativeD,, on thegravitino
readsnow

D,,yí~ V,,yt~+ ~A,,”y~yi~, — icvQ,,yi~. (5.4)

Although D,, is definedto be the full covariant derivative here, the Christoffel
connection can be dropped when the derivative acts on the gravitino because of
the antisymmetrizationof indices,as is well known [6].

The action (5.2) with the derivative (5.4) is now invariant under the local
U (1) transformations

i~ e~yt,,, Q,, i~ Q,, + O,,q, (5.5)

but sincethe commutatorof two D,,’s givesan extraterm proportional to the

field strength Q,,~= O,,QR — 0~Q,,,£grav is no longer invariant under local
supersymmetrytransformations(5.3). Instead,we find

&~grav= i(k�~~ [~(~,,�— ~y/,,)Q~,,+ ~i7,,vip(5~Q1~]. (5.6)

Heretheterm containingô~Q~mustbekept if Q,, is regardedasa functionof the

scalarfields, but canbe droppedif Q,, is treatedasan independentfield and its
equationof motion is used.Of course,� musthavethe sameU (1) chargecv as yi,

becauseotherwisethe transformationlaw (5.3) would not beU(l) covariant.
Ouraim is now to adda matterLagrangianto (5.2) suchthat thetotal action

is invariant both underlocal U (1) and local supersymmetry.It is well known

that the mattersectorsin (extended)supergravitiesaredescribedby non-linear
a-models [451;since we are here not interestedin discussingthe most gen-
eralmodel of this type,but ratherin the simplestnon-trivial example,we will
immediatelyspecializeto the bosonicSL(2,EIfl/SO(2) cosetspacea-modelas
our startingpoint. The Lagrangiancanbe alternativelyderivedby dimensional
reductionof simplesupergravityin four dimensions [44,6] after a duality re-
definition of the Kaluza—Kleinvector (see,e.g., refs. [39,40] for details).The
SO(2) U(l) stability subgroupof the cosetspacecan be identified as the
helicity group of the four-dimensionaltheory; this also explains the chargeas-
signmentsof variousfields below. The groupSL(2,IP1) hasthreegeneratorsZ’,
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Z2 and Y, where Y generatesthe maximal compactsubgroupSO(2). Their
algebrareads

[Y,Z’] = —2Z2, [Y,Z2] = 2Z1, [Z’,Z2] = 2Y, (5.7)

andthey arenormalizedsuchthat

Tr(YY) = —2, Tr(ZkZt) =

215k1 Tr(YZ”~)= 0. (5.8)

The bosonic field is an elementV of SL(2,H). Since this matrix represents
threedegreesof freedom,of which only two arephysical,onescalardegreeof
freedommust be eliminated.This is the main reasonfor requiring the action

to be invariantunderlocal U (1) transformations.The combinedactionof the
rigid SL (2,I~)andthe local U (1) transformationson V is thengiven by

V(x)—~g~V(x)h(x), geSL(2,lfl, h(x)ESO(2). (5.9)

The U(l) covariant derivative on V containsthe samegaugefield as (5.4); it
reads

D,,V~3,,V—VYQ,,. (5.10)

An action invariant under (5.9) is

£boson —keg” Tr( V~D,,V V~DVV ). (5.11)

At this point, we havetwo possibilitiesfor treatingthe gaugefield Q,,. Namely,
wecandefine Q,, by

Q,, = —~Tr(V
13,,V Y). (5.12)

In this way, the gaugefield becomesa function of the scalarfields andthus a
“composite” field, whose variation under local supersymmetry is determined
from the variation of the scalarfields. Theotherpossibility is to takeQ,, as an
independentfield which is subsequentlydeterminedby its equationof motion,
in whichcasetherewill appearextratermsbilinearin thefermionic fieldson the
right handsideof (5.12). Thisis the analogof theusualfirst orderformulationof
gravity. If Q,, istreatedasan independentfield, wecandropthe termswith ó~Q,,

in the supersymmetryvariations,but must at somepoint invoke the Q,, field
equation (so-called 1.5 order formalism, see ref. [6]). As for the Lagrangian,
the two approachesdiffer only in the higherorderfermionic terms.

To streamlinethe formulas, it is useful to introducesomefurther notation.
We definea complexmatrix Z = (Z’ + iZ2)/y~. Thecommutatorsandnor-
malizationsnow read

[Y,Z] = 2iZ, [Y,Z*I = —2iZ’, [Z,Z*] = —2iY, (5.13)

Tr(YY) = —2, Tr(ZZt) = 2, Tr(ZZ) = 0. (5.14)

As usefulabbreviationswe define

~Tr(V~D,,VZ) = ~Tr(V’O,,VZ), (5.15)

R,, —.Tr( V~D,,VY) = —~~Tr(V~O,,V Y) — Q,,, (5.16)
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which are the componentsof V1D,,V in the directionsof the threegenerators.
With (5.14) we have

V1D,,V =P,,Zt+PZ+R,,Y. (5.17)

Obviously, R~= 0 in secondorder formalism. In termsof thesequantitiesthe
scalarLagrangianbecomes

£ — * 1boson — —eg y,, v — ~

Although the term containingR,, hasa negativesign, leadingto an action that

is unboundedfrom below, the physical spectrumand the Hamiltonian of the
theory are perfectly well behaved.This is a consequenceof the fact that the
scalardegreeof freedomassociatedwith the Y generatoris a gaugedegreeof
freedomandhenceunphysical.

Acting on (5.17) with anotherderivative D~and antisymmetrizingin the
indicesp andv, we obtain the integrability relations

D,,P,, = V,,PV—2iQVP,,, (5.19)

D
111P~1 = 2iR[,,P~} , (5.20)

Q,,~ ~ = 4iP~,,P~1—2DI,,R~], (5.21)

from which we concludethat P,, hasU (1) charge2.
As the superpartnerof V we introducea complex fermion field x with the

usualDirac Lagrangian,which we write in the form

£fermion ~e (D,,,~y”~ XY~D,,X), (5.22)

wherethe Lorentz andU (1) derivativeis given by

D,,~ O,,x + ~.A,,aYaX — iflQ,,x, (5.23)

andthe U (1) charge/3 will be adjustedin a moment.
Since no further terms containing the spin connectionappear in the La-

grangian,we can now work out the field equationfor A,,” that follows from
£grav + £boson + £fermion. Weget

D[,,e~]” = ~[pY~v] — ~�abce,,beVC~X. (5.24)

As is well known, this equationcanbe solvedfor the spin connection,i.e. A,,”

(secondorder formalism). Similarly, we can usethe field equationto express
Q,, in terms of the other fields; (5.12) is thenreplacedby

Q,, = —~Tr( V
10,,VY) — ~ — ifl,~y,,x. (5.25)

This showsthat R,, no longer vanishesin the presenceof fermions,but is given
by a fermionic bilinear instead.

The variation of the boson15EV undersupersymmetryshould be linear in x~
andthat ofx linear in the derivativeof the boson.Theaction is invariant under
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the transformations(5.3) and

V’15�V = ~cZ + E~xZ~, (5.26)

= y”�P,,, (5.27)

if we addthe usual Noetherterm

£noether= �‘ (~,,YuYI~X~+xy”y’~yJ,,P~) . (5.28)

DemandingU (1) invarianceof this term, we arrive at the relation /3 — cv = 2.
Cancelingthe term proportionalto Q,,~in (5.6) againstasimilar term obtained
by varying~in (5.28)by useof (5.27) requirestheintegrabilityrelation (5.21).
In secondorder formalism,we canneglectthe term containingR,, (we canalso
neglectit in 1.5 orderformalism as long as we are not interestedin higherorder

fermionic terms). This completely fixes the chargeassignmentsto cv =

and /3 = ~, in accordwith our expectationthat the physical fermion states
correspondto the helicity ±~ statesof simplesupergravityin four dimensions.

At this point, the Lagrangian

£‘[e, cu’ V,X,A, Q] = £grav + £boson + £fermion + £noether

= ~ ~ + ~ — eg” ~ — ~R,,RV)

+ ~e(D,,~y”~ —XY~D,,X)+e(~J,,y”y~~P~+xy”y”yi,,P~,) (5.29)

is invariant underthe local supersymmetryvariations (5.3), (5.26) and (5.27)
modulohigherorder fermionic terms.To makethe Lagrangiancompletely in-
variant,we mustnow addquartictermsin thefermions,whosepreciseform will,
however,dependon whetherwe use 1.5 or secondorderformalism. The latter
choice has the advantagethat R,, vanishes,and that the integrability relation

(5.21) assumesasimpleform. However,with this choice,we arenotallowedto
droptermsthatcontainthevariationof Q,, undersupersymmetry.Using(5.26),
the variationsof (5.12) and (5.15) yield

= 2i~�P,,—2i~~P,~, (5.30)

= D,, (�,~), (5.31)

and,of course,15, R,, = 0. The actualcalculationof the cubic fermion terms is
a little tediousandnot very illuminating. It turns out that wehaveto addthe

following terms to the action:

~ (5.32)

The completetransformationlaws read (y,,~is the antisymmetrizedproduct

Y[,,Y~])

= �YayJ,,_yJYa�

_t —1-5 1• 1 —ii
— jif ~1� ,, + ~Yj,v~XY X~
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V’15~V=X(Z+EXZ,

= y”� (P,~—~7,,~). (5.33)

The term proportionalto R,, in the transformationlaw for yt,,, which vanishes
by (5.12), hasbeenintroducedto makethe whole expressionindependentof
Q,,. So we havethe sameexpressionsfor the transformationlaws when Q~ is

treatedas an independentfield, i.e. in 1.5 order formalism. But therewe get
otherhigher order correctionsto £‘. The total action is thengiven by

£ = £‘ —eyt,,~~yi”+ ~�““’ (~1,~~v2yp~+W,,?pct~iXX)

+4eyi1,,yi~1yi”yi + 4~e~xx. (5.34)

[Note that thefirst orderformalism would also requirethe determinationof the
supersymmetryvariationsof the fields Q,, andA,,”. This canbe doneas follows.
Treatingthesefields as independent,the variation of £ undersupersymmetry
will give somethingproportionalto the equationsof motion of Q,, andA,,”. So
we candefinevariations15~Q,, and15~A,,a suchthat the total variation of £ again
vanishes.]The next step would be to calculatethe terms of fifth order in the
fermionsandshow that they vanish.We will not performthis final consistency

checkas the theory is anyhowknown to be consistent.
Note that the action £ is also invariant under localcoordinate,local Lorentz

and local U (1) transformations

= —~iqyt,,, V
115qV = qY, 15q~= ~ (5qQ,, = 0,,q. (5.35)

Furthermore,it is invariant underglobal SL(2,EJ~)transformationsV g~V.
In secondorder formalismfor Q,, the associatedNoethercurrentis given by

= —4V{ (z* (P” — ~,~“’~“’x)+ c.c.) + ~i ( “““Vcu,, — 3Z;”’x ) }. (5.36)

If Q,, is treatedasan independentfield, the expressionsimplifies to

= —~D”VV~ + ~ Zt + Xyh1y~w,,Z)V_1. (5.37)

5.2. CANONICAL TREATMENT

To the Lagrangian(5.34) wewill now apply the usualDirac methodto obtain
thecanonicalmomentaandtheconstraints.As in thelastsectionwe will denote
two-dimensionalcurvedspaceindices by small letters i, j, k Since we are
dealingwith complex spinors,we considerx and ,~ as independent.Thus the
canonicalconfigurationvariablesappearingin the actionandtheir conjugated
momentaare

e,/’ ~i,,a u,,, ~i;i7,, V Q,, X X ‘538

Pa” Ha~ ~1” it” W S~’ A A
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Hereagainthe index p “takesthevalues” t andi. It is useful to introducesome
abbreviations:

n egtt , n& egtl , h” g’i — gitgti/gtt (5.39)

They arefunctionsof the dreibeinonly andbuild a two-dimensionalscalarden-
sity, vector and tensorand they are essentiallythe lapseand shift functions
introducedin section2, andthe inverseof the two-dimensionalmetric,respec-
tively. We will alsousethe index“n” for the combinationX,, X, + n’X,.

Let us now turn to the constraintalgebra.As in the last sectionwe get some
secondclassconstraintswhich haveto be solvedby passingover from Poisson
to Dirac brackets.Calculatingthe momentaof the spacecomponentsof the
dreibein,the spin connection,the fermionsandthe U (1) gaugefield we get

Pa’ = = 0, H0i = 151/ÔA,” = ~ (5.40)
it’ = ôL/ö~7, = ~�“yJ~, vi” = 15L/ôy~ = —~�‘Jl~i1, (5.41)

A = = ~ey’x, ..~ = = ~exy’, (5.42)

S~ = 15L~/öQ~= 0. (5.43)

Note that~ is nottheDiracconjugatespinorofA (to ensurethatthe combination
~ + ~A ,~,= —~ + ~A is real,~ mustbethe negativeconjugateof A). Thelast
constraintS’ 0 leadsto anothersecondclassconstraintÔL7ÔQ, 0, which
is, of course,just the spatialcomponentof (5.25),

T, mR — ~ + ~ 0. (5.44)

The Dirac bracketsarecalculatedin appendixB. The non-vanishingbrackets
containingthe spin connectionare

{Aia(x),ejb(y)}* = 2�~~b15(
2)(x,y),

= 2fl~eet22e~~ejjIX 15

{A,” (x),x (y)} * = —n~’�abCejbyt?C%15

{A,”(x),X(y)}~ = _nl�~1bce,bXyCyt15(2)(x,y), (5.45)

andthosecontainingonly fermionsare

{Xa(X ),~p(y)} * = —n ~

{y1io(X),ii7~p(y)}~ = c
115~~o~

2~(x,y). (5.46)

All otherbracketsof the fields c’’, A”, x and yt, vanish.
The situationfor the bosonV and its momentumW is slightly morecompli-

catedbecauseV is an elementof SL(2,II), which is not a linear space,but the
subsetof the vectorspaceof all 2 x 2 matricesdefinedby detV = 1. Sowe may
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takeV to be ageneralmatrix andget additionalconstraints*7.How this is done
is also shownin appendixB. By defining amatrix derivative

~ ~ ±Tr(AV) = A, (5.47)
\aV/mn dVnm

we cancomputethe momentumof V (rememberthat P,, = P, + n’P,):

w = ôL~/15V

= — ~ (nP~— n117
0x + �~Wjyj%)Z*V’

~ ~nR~YV~’. (5.48)

The Dirac bracketsof V andW, also computedin appendixB, aremostconve-
nientlywritten in matrix form (with A,B arbitrary2 x 2 matrices).Up to spatial

15-functionsthey read

{V,Tr~’VA)}~= A— ~Tr(V’A)V, (5.49)

{Tr(l’VA),Tr(WB)}~ = ~Tr(1’VA) Tr(V’B) — ~ Tr(WB) Tr(V’A).

After solving the secondclassconstraints(5.40) to (5.44) we now compute
theremaining(first class)constraints.Theseare thederivativesof£ with respect
to the Lagrangemultipliers Q~,y’~,A,” andc,”. We get

Tm ô.C/15Q, = —Tr(WVY) — ~i�

11~

1yj1 + ~ie.~y’x. (5.50)

It is easyto seethat T[q] = f q T is the generator of the local U (1) transfor-

mations(5.35).The Dirac bracketsare

{T[qI,V}~ VYq,

{T[q],W}~ = —YWq,

{T[q],yje}~ =

{T[q],x}~ = ~ (5.51)

Onemight expectthat T has non-vanishingbracketswith the spin connection
sinceit containsx ande”, but a short calculationshowsthat

{e,~ytX,Aj~~}*= 0. (5.52)

It is herethat we meetagainwith the theorydefinedby the Lagrangian(5.32),
whereQ~is not an independentfield but given by eq. (5.12). Evaluatingthe
canonicalformalism in that casewould leadto the sameconstraint T not by
differentiating £ with respectto Q, but by observingthat the componentof

W in the direction of Y is not free but given by the fermion terms in (5.50).

“~ This method works equally for other non-exceptionalgroups,but is much more difficult to
implementfor theexceptionalgroups.That is why in ref. [18] a differentparametrizationwas
adopted.
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Since Q, itself is a Lagrangemultiplier and doesnot appearin any constraint
andbecausethe spatialcomponentsQ, can be eliminatedby the secondclass
constraint(5.44),we getthesamealgebraof first classconstraintsin bothcases.

The Lorentz constraintis given by

La = (5~C/öA~”= ~�‘.‘ (D,e~,,— ~7jYaytj) — ~CCa’XX (5.53)

andwedefinethegeneratoroflocalLorentztransformationasL [
0)a] = f ~

which actson the fields as

{L[0)”], eb}* = �b~CWaCIC,

hr ai ~ ~ a4C
t’-~t

0) I, “ib1~ = ‘-‘i0)b + �bacW ZSj

=

{L[w”],~}~= ~wayaX. (5.54)

Taking the derivativeof £ with respectto ~J,we getthe supersymmetrycon-
straint

S = ~C/15~7, = _XTr(WVZ*) + c”(D,yi
1 + ~iR,yt1)

+ ~YabWj~?bX), (5.55)

wherewe haveusedthe constraint(5.44) to obtainthe term proportionalto R.
The generatorof local supersymmetrytransformationis definedby S [�] =

f ES + Se and it is straightforwardto verify that for any field ~ we have
{S[�],~}~ = 15~with the transformationdefinedby (5.33),but since some
of them containtime derivatives,they areonly equalmodulo the equationsof
motion; e.g.,we havefor the matterfields

{S[c],V}~ = EXVZ*+X�VZ,

{S[e],VV}~ = _fXZ*W_~�ZW_ ~&‘V’D,

~ (~~�—~yt1)VYV’ + eyIxVZVI~xyJ�VZ*V1),

{S[�],P,}, = (D, + 2iR,)ë~,
{S[�],R, + Q}~= 2iP,~� —2iP7�x,

{S[� ],x}~= h”y,� fi~— n~
1y’�P, (5.56)

where
P, _—P,—i~J~x,P=Tr(WVZ)+�”~J,y~~. (5.57)

Finally we will computethe diffeomorphismandHamiltonian constraints,i.e.,
we mustevaluate7-(~= 151/ôet”. It takesa little further calculationto construct
the generatorof diffeomorphismsandthe WDW constraintfrom 7~ta~A slightly
quicker method for the diffeomorphismgeneratoris to require that its Dirac
bracketwith any field should yield the correspondingLie derivative on this
field, viz.,

= 3~kea+ ~k0ea (5.58)
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With V[~k] = f,kpk this leadsto

Vk = —Tr(WiikV) + ~f’3(3EAJ”ek~ + Ak”3iCIa)

— ~e(Dk~y’x —~Y’3kx)+ e”(8,i~7Jytk+ ~7k0,cuj). (5.59)

As shownin appendixC this canbe obtainedfrom 7~(aby

= ek”l-Ia + QkT + Ak”La + Wk
5 + SWk. (5.60)

Subtractingtheseotherconstraintsfrom Dk replacesthe normal derivativesby
the (super)covariantones, i.e., we can define a U(l) and Lorentz covariant
diffeomorphismconstraint

7-~k— QkTAk”La = —Tr(WDkV) +

— ~e(Dk~y’x —~y’Dkx) + �~1(D,i~7~yi,, + yJkDiV1~), (5.61)

which generatesextraU(1) and Lorentz rotationswith parameters—(“Qk and
~kAka respectively,andwhichgives the correctresult only weakly.

The Hamiltonian constraint,asdefinedin appendixC, is

N = — neh” ~ — D~X’~JX+ X’/iDIX)

+ cc” (~e”’Fiia + (P, — ~yt,X)Xy’yt~ — (Pr — ~w~)~~‘x)
—4e2~x~x, (5.62)

where.i~andP aregiven by (5.57). As also seenin appendixC, the diffeomor-
phism and Hamiltonian constraintsdefined in this way are equivalentto the

“true” constraints7-ta if and only if the dreibein itself is not degenerate;oth-
erwise a solution of (5.59) and (5.62) will not in generalbe a solution of the

theorydefinedby the Lagrangian (5.34), which containsthe inversedreibein,
too. Evidently, all constraintsarepolynomial in termsof thecanonicalvariables
that we havechosen.

Finally we haveto expressthe conservedchargeof the current (5.37) in terms
of the canonicalvariables,sincethis is expectedto be anobservablein the sense
of Dirac, i.e., it shouldweaklycommutewith all constraints.We have

Q = f d2xej’ = fd2xVW. (5.63)

Onecanobtainthis simpleexpressionwithoutusingthecurrent (5.37); consider
a space—time dependent SL(2,]~)transformationwith parameterg1 (x). Then
the current is given by

= f d2xdteTr(J~~,,g’). (5.64)

On the otherhand,sinceonly V transformsunderSL(2,EJfl, we have

= f dt15iC = f d2xdt Tr (~fg~1V + ~3t(g_1V)). (5.65)
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From this we infer#S that the time componentof the currentmustbe Vl’V.

5.3. ALGEBRA OF CHARGES AND CONSTRAINTS

A final check for our calculation is to show that the constraintsare indeed
first class, i.e., that their Dirac bracketsvanishweakly. The U(1), Lorentzand
diffeomorphismgeneratorsform the usualsubalgebra,which wejust write down
for completeness:

=

=

=

{L[w”],L[w”]}~ = L[Ea~WbW~]. (5.66)

Their bracketswith S maybe obtainedby using thatS is a spinordensitywith
U (1) charge—~, which yields

= s[~kok�]

{L[wa],S[c]}~ =

{T[q],S[c ]}* = S[~iqc]. (5.67)

To get thebracketswith N oneusesthatN is a U (1) andLorentz scalardensity
of weight 2. So it commuteswith L and T andwe have

{D[~],N}. = c~OkN + 2ak~N. (5.68)

A morecomplicatedcomputationshowsthat

{S[�],S[~]}~ = ~

+ �“~(�~?a�— /a�~)~YbXL~. (5.69)

This vanishesagainweakly, but it is not the generatorof any combinationof
transformationsdefinedabove,as expectedsincewe did not introduceauxiliary
fields to closethe algebraof supersymmetrytransformations.The crucialpoint
when passingover to the quantumtheory is, of course,that all the “structure
functions” in (5.69) appearto the left of the constraints.

Whatremainsnowis to showthatthecharge(5.63) indeedcommutes(at least
weakly) with all the constraints.By usingthe Dirac bracketsofT [q] andL [w”]
given in (5.51) and (5.54) it is immediatelyclearthe VW is U(1) andLorentz
invariant, and thus {T[q], Q}~= {L[w”], Q}~ = 0. Under supersymmetry

#8 Note that this is not immediately clear becauseone might have to integrateby paris some

time derivativesto proceedfrom (5.65) to (5.64). This would happen if £ changesunderthe
global symmetry by a time derivative,which is not the casehere.
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VW changesby a total derivative, as canbeenseenfrom (5.56). So beingan
integral overthe spatialmanifold Q commuteswith S[�], and, of course,also
with the generatorof diffeomorphismsV[ç~].

To obtainthe bracketwith 7-I, we haveseenalreadyin appendixB that P, and
R + Q commutewith the chargeQ. Evaluatingthebracket{Tr(WVZ), VVV}~

using (5.49) also giveszero,which leadsto {P, Q}~ = 0. SinceV and‘14) enter
into N only via P, P, andR, + ~ we concludethat {N, Q}~ = 0. This estab-
lishesour claim that Q is indeeda “physicalobservable”in the senseof Dirac,
i.e., it commutesweakly#9 with all the first classconstraints.In the quantized
theoryandin the absenceof anomaliesin the algebraof constraintsandcharges,
the correspondingoperatormapsphysical statesinto physical statesandcan
thereforebe usedto generatenew solutionsof the WDW equationfrom old
ones.

We concludethissection(andourlectures)with someremarksconcerningthe
quantizedtheory,wheremany openquestionsremain.The first stephereis to
find an operatorrepresentationof the algebradefinedby (5.45), (5.46), (5.49).
Let usfirst havealook atthebracketsof V andW. Sinceall theconstaintsdepend
on 14) only via the compositefields*lO Tr(’1’VVZ), Tr(WVZ*) andTr(WVY),
it is sufficient to give an operatorrepresentationfor them.The Dirac brackets
of thesefieldsaregiven by (againwe do not explicitly write out thedependence
of the 15 functionson the spatialcoordinates)

{Tr(’1’VVA),Tr(1’VVB)}~= Tr(WV[B,A]),

{V,Tr(WVA)}~ = VA. (5.70)

A suitableoperatorrepresentationis therefore

V-*V, Tr(VVVA)—~Tr(iVA15/óV). (5.71)

Theseoperatorssatisfy

[Tr(iVA15/15V),Tr(iVB(5/15V)] = (—i) Tr(iV[B,A] 15/15V),

[V,Tr(iVA15/(5V)] = (—i)VA. (5.72)

It is equallystraightforwardto find an operatorrepresentationfor the graviti-
nos,as they do not mix with any otherfields:

I, ~ I. i�jk(5/ól/.fk. (5.73)
The commutatorreplacing(5.46) reads

[i6,k 15/15~7ka’~jfl] = (—i)�,)(5~,fl. (5.74)

#9 In this case it commutes even strongly, which is aconsequenceof usingfirst orderformalismfor

Q,,. See ref. [18], wheresecondorder formalismis used and the correspondingcommutators
only vanishmodulo the constraints.

#iO Indeedwe have W = ~.Tr(WVZ)Z*V_I + ~Tr(WVZ’)ZV’ — ~Tr(kVVY)YV’ since

Tr(WV) vanishes by a second class constraint.



H. Nicolai and H-i Matschull / Aspectsofcanonicalgravity and supergravity 55

Observethat this representationis evensimpler than the one usedin section
4.2, becausethereis no needto give up manifestcovarianceas the fermionsare
complex.

For the spin connection,the dreibeinandthe fermion field the situationbe-
comesmorecomplicated.Problemsaremainly causedby the new contributions
on the right hand side of (5.45). So, for instance,we can no longerrepresent
A1” by a multiplication operator.To find suitableoperatorsobeying (5.45),we
must thereforesearchfor combinationsof A,” andx that split into two pairsof
canonicallyconjugatefields. A possibleansatzis to takethe complexconnection

Ar” mA1” ±eabce~y~ (5.75)

whosecomponentscommutewith eachother,

{A~-a,Ay-b}~= {AT”, Ayb}~ = 0, (5.76)

andwhichobey
= {A1”,~}~ = 0. (5.77)

Unfortunately, the bracketsof At” with ~ and vice versa do not vanish,nor
doesA,~”commutewith A;

6. Neverthelessit is worth observingthat, by using
the new connection, the supersymmetry constraint simplifies to

$ = _xTrO~VVZ*)+e”D,~yi
1—e”y,xP7, (5.78)

where
D1~yi1 = (3, + ~A~”ya + ~i(Q, + R,))yi1 (5.79)

is the covariantderivativewith the spin connectionreplacedby A,~”.This ex-
plicit realizationof (onehalf of) the canonicalsupersymmetrygeneratorshows
that thereareno orderingambiguities!

We could now go aheadandtry to solveonehalf of the quantumsupersym-
metryconstraint

= 0. (5.80)

However, thereis still theotherhalfof the supersymmetryconstraint,for which
our operatorrepresentationdoesnot work, so that evenif we succeedin solving
this equation,we could not claim to havesolved the full WDW equation.Per-
hapsthe resolutionof this problemis thesameas in (super)stringtheory: there,
one imposesonly half of the Virasoroconstraints(correspondingto the Vira-

soro generatorsLm with in > 0) on the physicalstates,whereasthe hermitean
conjugate operators(for which in <0) neednot annihilatethem.

Appendix A

In this appendix, we presenta quick proof that the crucial Poissonbracket
(3.4) indeed vanishes.This proof is also given in Ashtekar’sbook [2] for a
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different choiceof canonicalvariables.First we calculatethe Poissonbracket

(3.5) using

{Pma,Pnb} = {emap,enbp}= 0,

{Pma,e~ep}= CnbPma— embeflap,

{e~,pflh} = ee~b,

{e~,e~
6p}= —3e~’e~h. (A.l)

We get
{P~ma,i

5nb}= (1 + 2$) (pn
6ema—P,naCni,) . (A.2)

So this will only vanishfor /3 = — ~. Next we definea functional

G —~fdxeeahcQabc= _~fdxcm~~remc0nerc (A.3)

andcalculatethe Poissonbracketof this functional with iArna:

{P~nc, G} = ~e �abcCmdQabd

{PC,nc,G} = ~e EabdCmcQabd

=~ ~ G} = ~ (�abcCmd — ~�abdemc)Qabd. (A.4)

We haveto showthat this is equalto

~�abcW,nab = ~abce,nd (~
2d~h+ ~hda — ~abd) . (A.5)

By taking the differenceof the last two equationsand renamingsomeindices
we find

{l5mc, G} + 2~abc0)mah = ~ ( — c/e~,~+ �acdemb — fahdCmc + ~ahc”’md) ~2ahd
(A.6)

The term inside the parenthesesis totally skew symmetric in the four three-

dimensionalindicesa, h. c andd. So we endup with

{P~mc,G} = ~�abcW,nah. (A.7)

Appendix B

In this appendix,we calculatethe Dirac bracketsof N = 2 supergravityin
threedimensions.Thesecondclassconstraintsaregivenby eqs.(5.40)to (5.44).
We includetwo furtherconstraintson the matrix V andits conjugatemomentum

‘14) so that we can treatthem as general2 x 2-matrices,i.e., we candefine the
momentumas

)~Vmn= óL/c5V~,~, (B.1)

which is just (5.48) in matrix notation. The Poissonbracketof V andW is

{Vmn,Wpq} = 15mq15pn ~ {Tr(VA),Tr(WB)} = Tr(AB),

{detV,Tr(1’VB)} = Tr(V~’B)detV,(B.2)
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for somematricesA andB. Hereas in the following we will not write down the
spacedependenceof the fields and all the bracketsareto be multiplied by the
spatial15-function.The additional constraintsensurethatV ~ SL(2,E~) andthat
V is tangentto SL(2,]~).The full set of secondclassconstraintsnow read

Pa’ 0,

Z,~ Ha’ — ~E’~eja 0,

A mA— ~ey’x ~0,

Am —~+ ~e~y’~0,

Ti _irl + ~�iJ ~ij

if’ + ~e”i~J~ 0,

S’ 0,

T, R — ~ + ~ 0,

V detV — 1 0,

WmTr(WV)~0. (B.3)

TheDirac brackets[8] aredefinedby

{A,B}. = {A,B} — ~{A,K}C(K,L){L,B}, (B.4)

whereK, L, M, ... standfor the aboveconstraintsandthe coefficientsC(K, L)
are (at leastweakly) givenby

~C(K,L){L,M} = 15(K,M), (B.5)

i.e., C(.,.) is the inversematrix of{.,.}. By 15(K,M) we mean 1 ifK andM
are the sameconstraintsand0 otherwise,e.g.,15 (Z,~,Zt) = ogo/ (observethe
position of indices).

By writing out eq. (B.5) for fixed M andusingpart of the Poissonalgebraof
the constraintswe get the following formulas,which canbe usedto computeall
componentsof C(.,.):

C(K,P~)= —2ejji~”615(K,Zb’),

C(K,T,) = —15(K,S’),

C(K,W) = —~15(K,V),

C(K, V) = ~(15(K, W) — C(K, T,){T,, W}),

C(K,Aa) = —n’4,~,(15(K,~i~)— C(K,P,~){P,~,Jfl}—

C(K,A~)= ny~p(15(K,Ap)C(K,P~){P~,Afl}_C(K,Te){TI,Ap}),

C(K,T’) = e
11(15(K,T’)— C(K, Tk){Tk,F’}),
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C(K,T’) = c,1(15(K,T’) — C(K, Tk){Tk,T’}),

C(K,Z~)= ~ _C(K,A~){A~,P~’}

— C(K,A~){A~,P~}— C(K, Tk){Tk,P~}),

C(K,S’) = (5(K,Tj)C(K,W){~Ti}C(K,Aa){Aa,Ti}

— C(K,A~){A~,T,} — C(K,f~’){T~<,T,}

- C(K,F~){T~,T~} - C(K,P~){P~,T,}. (B.6)

Note that C (.,.) is antisymmetriconly if both entriesarebosonic,otherwiseit
is symmetric.We canusethe constraints(B.3) to expressany quantityin terms
of A,”, e~,x~~, ~,, ~, V andW, sowe haveto evaluatethe Dirac bracketsof
thesefield only. As an examplewe calculatethe Dirac bracketof AkC with the
other fields:

{A,a,e1b}~= ~

= C(Z~,P~) = 2~~ab (B.7)

The Dirac bracketof two spin connectionsdoesnot vanishbut gives

{A,”, A1
6}~= C (Z~,Z~)

= 2eJk17~(C(Z~,Aa){A~, P~} + C(Z~,A,,){A~,P~})

= 2n~eet~2etbe,j~X. (B.8)

Becausethis containsthe fermion, theremustbe a non-vanishingbracketof A
1”

with x to ensurethat the bracketsobeythe Jacobiidentity,

= _{AIa,Z~}C(Z~,Afl){Afl,X<,}= ~C(Z~,Aa)

= flleabce(YLYX) (B.9)

The bracketsof A” with yi~, V or W vanish since the componentsC (Zr, K)
vanishfor K = F’, V, W or T~,soaltogetherwe get (5.45). In the sameway

onecanseethatx hasnon-vanishingbracketsonly with £ andA,” and yt, only
with ~ giving (5.46). What remainsare the bracketsof V and W. Sincethe
only constraintthat doesnot commutewith V is W, wehave {V, V}~= 0 and

{Vmn,1’Vpq}* = {Vmn,Wpq}_{Vmn,W}C(W~V)~V,)’Vpq}

= 15mq15pn~VmnVj~q’, (B.l0)

{Wmn,l’Vpq}* = — {Wmn, V}C(V, W){W~)/Vpq}

— {Wmn, W}C(W, V){V,Wpq}

= ~WmnVp~’~)4)pqV~. (B.ll)

Written in matrix notation we get (5.49). From thesebasicbracketsone can
computethe bracketsof the compositefields P,, P7 andR + Q, with W, which
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oneneedsto obtainthe algebraof the constraints.A straightforwardcalculation
showsthat

{Tr( V’3,V A)(x),W(y)}~= _V(y)~(VAVb15(2)(x,y)) (B.l2)

for any tracelessmatrix A. This leadsto the crucial result that P, andR + Q,
commutewith the Noetherchargeof theglobal SL(2,Ef~)group(5.63),sincethe
right handside of (B.12) multiplied by V(y) givesa total derivativemy.

Assigningspecialvaluesto A we get

{P,(x),W(y)}~ = —i(P,Y+ (R, + Q,)Z)V’15~2~(x,y)

+ ~ZV~’ (y)0,1512~(x,y)

{R, + Q,(x),W(y)}~= i(P,Z* — P7Z)V~Y2~(x,y)

— ~YV’(y)0,15~2~(x,y), (B.13)

where0, alwaysacts on the first argumentof the 15-function.

Appendix C

Herewe will computethe Hamiltonian anddiffeomorphismconstraintsfor
the N = 2 supergravityin section5. First we definesomeabbreviations,some
of them aredefinedalreadyin section5:

F,, m F,, -‘1~7,,X,

P Tr(T’VVZ) + e”yJ
1yJ~= _nPn,

R m -Tr(1’VVY) =

G” —~ie’e””P~J~yJ~+ ~iAY”X. (C.])

A straightforwardcalculationnow showsthat the totalLagrangian(5.34) is

£ = eg””(—~,,~+

+ e~vP(~e,,aFvpa+1~7,,D~yt~+ (P,, ~ypyt~~~

+ ~ (C.2)

wherethe derivativeD,, is the equalto D,,, but the gaugefield Q,, replacedby

Q,, + R,,, which is equalto —~Tr( V’0,,V Y); thusonly the first line in (C.2)
dependson Q,, and the secondorderLagrangian[with Q,, definedby (5.12)]
is simply given by droppingthe R,, — G,, termsin (C.2).

In this notation the secondclassconstraintT, (eq. 5.44) just becomesT, =

R — G,. To differentiatethe Lagrangianwith respectto e,a weuse

= ea’ (eh”X,Yj — nX~Y~)— ne1~h”(X0Y, + X,Y0) (C.3)
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andwe mustrememberthat G,, dependson the dreibein:

= (5~ea”G~— ea’G,, + e,,~G’+ 4ie ~ . (C.4)

This yields

Na = oL715e,a

= —ea’(eh”~ — n~(pp* — ~RR) — ~nGnGn)

_hh1e,a(~P*+PJ~+Ri(nRn—nGn))

~

+ ee[a’eb]’ (D,xybx ~ybDTx) 4eea’~~~x, (C.5)

wherewe droppedtermsproportionalto R — G,. This is the N = 2 analogto
(4.15) for puresupergravitywithout matterfields. The generatorsof diffeomor-
phismsare formedin a similarway here,i.e.,we haveto compute

Vk CkaNa+QkT+AkLa+Wk$+S~k. (C.6)

The calculation simplifies if one rewritesthe otherconstraintsin termsof the
fields introducedabove,which leadsto T = n(G~— R~)and

$ = XP* + E”D,~1—�”y,XP,~+ ~1”~XYiWj—YiXX~j). (C.7)

The result is

= Tr(WDkV) — ~�“ (3,A3”ei.~,,+ Ak”3,eja)

+~e(3k~y’x—~y’3kX)—f”(3,T/3VJk +~L~yi1). (C.8)

This coincideswith (5.59), which wasconstructedsuchthat V[~]i =

providesthe Lie derivativeof any field by taking the Dirac bracket{V[k] q~’}~
=

The mostnaturaldefinition for the Hamiltonianconstraintwould now be the
time componentof Na, i.e. e,”N~,but unfortunatelythis containsthe Lagrange
multiplier e,a and,evenworse, it is not polynomial in the canonicalvariables.
But wearefree to takeanylinear combinationof the Na’5 that is independent

of Dk to be the Hamiltonian constraint.It turns out that we get a polynomial
function by taking

N = eetaNa + ~(nR0 + nG~)T

= — neh’
1(~~— + XYiDIX)

+ cc1 (~CtaF,ja+ (P, — ~ (P1* — ~ ~“x)
-~e2~x~x. (C.9)
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The only terms that are not obviously polynomialare cc”’ = _~ea~Eh1e,bejc

andenh” = I ik~1Ig~.Note that in secondorderformalism for Q~we get the
sameexpressionfor the Hamiltonian constraintwithout addingthe term pro-
portionalto T. As in thefour-dimensionaltheory(eq. 3.14) thepolynomialized
Hamiltonian constraintis a densityof weight 2. The overall multiplication by
the dreibeinin (C.6) and (C.9) leadsto new solutionswith degeneratemetric,
which arenot includedin the theorydefinedby the Lagrangian(C.2), because
only for a non-degeneratemetric do we haveN = Dk = 0 ~ N~= 0.

References

[1] C.J. Isham, Conceptualand geometricalproblems in quantum gravity, in: RecentAspects
of QuantumFields, Proc. Schladming(1991), eds. H. Mitter and H. Gausterer(Springer,
Berlin, 1991).

[2] A. Ashtekar,New Perspectivesin Canonical Gravity (Bibliopolis, Napoli, 1988).
[3] G. ‘t Hooft, Theblack hole horizon asa quantumsurface,Phys.Scr. T36 (1991)247; Phys.

Lett. B 198 (1987) 61;
G. Veneziano,An enlargeduncertaintyprinciple from gedankenstring collisions?,CERN
preprint CERN TH5366 (1989);
D.J. GrossandP. Mende,Stringtheory beyondthe Planckscale,NucI. Phys.B 303 (1988)
407;
E. Verlinde and H. Verlinde, Scatteringat Planckianenergies,Princetonpreprint PUPT-
1279 (1991).

[4] G. ‘t Hooft, The black hole interpretationof string theory, NucI. Phys.B 335 (1990) 138.
[5] A. Casherand F. Englert, Entropygenerationin quantumgravity, preprintULB-TH 01/91;

R. Brout andR. Parentani,Physicalinterpretationof theblack holeevaporationasa vacuum
instability, preprint ULB-THO 1/92.

[6] P. van Nieuwenhuizen,Supergravity,Phys. Rep.68 (1981) 189.
[7] M. Green, J.H. Schwarzand E. Witten, Superstring Theory I, II (CambridgeUniversity

Press,1987).
[8] PAM. Dirac, Lectureson QuantumMechanics(AcademicPress,New York, 1965).
[9] R. Arnowitt, S. DeserandC.W. Misner, Thedynamicsof generalrelativity, in: Gravitation:

An Introdoction to Current Research,ed. L. Witten (Wiley, New York, 1962).
[10] C.W. Misner, K.S. Thorne and J.A. Wheeler,Gravitation (Freeman,New York, 1973).
[11] J. Effel, La Creation du Monde (Paris, 1950).
[12] J.A. Wheeler, in: Relativity, Groupsand Topology,eds. C. DeWitt and B. DeWitt (Gordon

and Breach,New York, 1964).
[13] B. DeWitt, Quantumtheory of gravity, I & II, Phys. Rev. 160 (1967) 1113; 162 (1967)

1195.
[14] A. Ashtekar,New variablesfor classicaland quantumgravity, Phys. Rev. Lett. 57 (1986)

2244.
[15] A. Ashtekar,New Hamiltonian formulation of general relativity, Phys. Rev. D 36 (1987)

1587.
[16] T. JacobsonandL. Smolin, Nonperturbativequantumgeometries,NucI. Phys.B 299 (1988)

295.
[17] C. Rovelli and L. Smolin, Loop spacerepresentationof quantum generalrelativity, NucI.

Phys. B 331 (1990) 80.
[18] H. Nicolai, Thecanonicalstructureof maximally extendedsupergravityin three-dimensions,

NucI. Phys.B 353 (1991) 493.
[19] A.J. Hanson,T. Reggeand C. Teitelboim, ConstrainedHamiltonian Systems(Accademia

Nazionaledei Lincei, Rome, 1976).



62 H. Nicolai and H.-]. Matschull / Aspectsof canonicalgravity andsupergravitv

[20] M. Henneaux, Hamiltonian form of the path integral for theories with a gaugefreedom.
Phys. Rep. 126 (1985) 1.

[21] T. Jacobson,New variablesfor canonical supergravity,Class. Quantum Gray. 5 (1988)

923.
[22] E. Witten, (2+ 1)-dimensional gravity as an exactly soluble system, Nuci. Phys. B 311

(1988) 46.
[23] 1. Bengtsson,Yang—Mills theory and general relativity in three-dimensionsand four-

dimensions,Phys. Lett. B 220 (1989) 51.
[24] R. Haag,Local QuantumPhysics (Springer,Berlin. 1992).
[25] B. Bruegmannand J. Pullin, IntersectingN loop solutionsof theHamiltonian constraintof

quantumgravity, Nuci. Phys. B 363 (1991) 221.
[26] H. Kodama,Holomorphicwave functional of the universe,Phys. Rev. D 42 (1990) 2548.
[27] B. Bruegmann. R. Gambini and J. Pullin, Knot invariants as nondegcneratequantum

geometries,Syracuseprcprints SU-GP-92/1-1(1992), SU-GP-92/3-I (1992).
[28] E. Witten, Quantumfield theory and the Jonespolynomial. Commun. Math. Phys. 121

(1989) 351.
[29] S. Dcscr, J.H. Kay and KS. SIdle, Hamiltonian formulation of supergravity.Phys. Rev. D

16 (1977) 2448;
ES. Fradkin and MA. Vasiliev, Hamiltonian formalism,quantization.and S-matrix for
supergravity, Phys. Lett. B 72 (1977) 70:
M. Pilati, The canonical formulation of supergravity,NucI. Phys.B 132 (1978) 138.

[30] S. Dcser,R. Jackiw and G. ‘t Hooft. Three-dimensionalEinstein gravity: Dynamics of flat
space,Ann. Phys. 152 (1984) 220.

[31] S. Deser and R. Jackiw, Three-dimensionalcosmologicalgravity: Dynamics of constant
curvature,Ann. Phys. 153 (1984) 405.

[32] J. Abbott, S. Giddingsand K. Kuchar, Einstein’s theory in a three-dimensionalspacetime.
Gen. Rd. Grav.16 (1984) 751.

[33] S.P.Martin, Observablesin (2+1)-dimensionalgravity, Nuci. Phys.B 327 (1989) 178.
[34] S. Carlip. Observables,gaugeinvariance,and time in (2+1)-dimensionalquantumgravity.

Phys. Rev.D 42 (1990) 2647.
[35] K. Koehler.F. Mansouri,C. Vaz and L. Witten, Two particlescatteringin Chcrn—Simons—

Witten theory of gravity in (2+ 1)-dimensions,Nuci. Phys.B 448 (1991) 373.
[36] A. Ashtekar, V. Husain, C. Rovelli, J. Samuel and L. Smolin, (2+1) quantum gravity as a

toy model for (3+ I) theory. Class.QuantumGray. 6 (1989) Li 85.
[37] K. Koehier, F. Mansouri, C. Vaz and L. Witten, Wilson loop observablesin (2+1)-

dimensional Chern—Simonssupergravity,Nuci. Phys. B 341 (1990) 167; Scatteringin
(2+1)-dimensionalChern—Simonssupergravity,NucI. Phys. B 358 (1991) 677.

[38] H. Verlinde, Conformal field theory. 2-dimensionalquantum gravity and quantizationof
TeichmOllerspace,Nucl. Phys.B 337 (1990) 652.

[39] B. Julia, Group disintegrations. in: Superspaceand Supergrai’ity.eds. SW. Hawking and M.
Rocek (CambridgeUniversity Press.1980); preprint LPTENS 82/22 (1982).

[40] H. Nicolai, Two-dimensionalgravities and supergravitiesas integrablesystems,in: Recent
Aspectsof Quantum Fields, Proc. Schladming (1991). eds. H. Muter and H. Gausterer
(Springer,Berlin, 1991).

[41] B. de Wit, H. Nicolai and A. Tollsten, Locally supersymmetric D = 3 nonlinear sigma
models,CERN preprint CERN-TH-6612-92(1992).

[42] S. Elitzur, A. Forgeand E. Rabinovici, The wave functional of a superclock, Nuci. Phys.
B 274 (1986) 60.

[43] B. Zumino, Supersymmetryand the vacuum,Nuci. Phys.B 89 (1975) 535.
[44] 5. Ferrara, D.Z. Freedmanand P. van Nieuwenhuizen, Progresstoward a theory of

supergravity,Phys. Rev. B 13 (1976) 3214;
S. Deserand B. Zumino, Consistentsupergravity,Phys.Lett, B 62 (1976) 335.

[45] F. Cremmer. S. Ferrara and J. Scherk, SU(4) invariant supergravitytheory, Phys.Lett. B
74 (1978) 61;
E. Cremmerand B. Julia, The S0(8) supergravity,Nuci. Phys.B 159 (1979) 141.


